The BRAF activating mutation, harbored by approximately 10% of colorectal cancers (CRC), confers dramatic prognosis to advanced diseases. In early-stage setting, the identification of the BRAF mutation does not impact the therapeutic decision. Yet, the BRAF mutation could be considered as a stratification factor in adjuvant trials, because of its prognostic impact after relapse. Moreover, both BRAF mutation and mismatch repair (MMR) statuses should be determined in all CRC to help identify sporadic tumors versus Lynch syndrome-related tumors. Indeed, in patients with MMR-deficient (dMMR) tumors and MLH1 loss of expression, the BRAFV600E mutation indicates a sporadic origin. In advanced BRAF-mutated CRC, the standard of care remains fluoropyrimidine-based cytotoxic regimen in combination with bevacizumab. Although a recent meta-analysis showed that there was insufficient data to justify the exclusion of anti-EGFR monoclonal antibodies, antiangiogenic agents should be preferred in the first-line setting. Despite the lack of a randomized phase 3 study dedicated to BRAF-mutated CRC, chemotherapy intensification combining a quadruple association of 5-fluorouracil, oxaliplatin, irinotecan (FOLFOXIRI), and bevacizumab seems like a valid option. Although first results with BRAF inhibitors as single agents in BRAF-mutated CRC were disappointing, their association with therapies targeting the MAPK pathway seems to overcome the primary resistance to BRAF inhibition. In the field of sporadic CRC, the BRAF mutation is strongly associated with MMR deficiency. Considering breakthrough results of immune checkpoint inhibitors in dMMR repair tumors, determination of the MMR status appears to be mandatory. Given the dramatic prognosis conferred by the BRAF mutation, patients with BRAF-mutated advanced CRC need to be systematically identified and proposed for clinical trial enrolment in order to benefit from innovative therapies.
The ErbB/HER family comprises four distinct tyrosine kinase receptors, EGFR/ErbB1/HER1, ErbB2/HER2, ErbB3/ HER3, and ErbB4/HER4, which trigger intracellular signals at the origin of essential cellular functions, including differentiation, proliferation, survival, and migration. Epithelial cells, named cholangiocytes, that line intrahepatic and extrahepatic bile ducts, contribute substantially to biliary secretory functions and bile transport. Although ErbB receptors have been widely studied in cholangiocarcinoma (CCA), a malignancy of the biliary tract, knowledge of these receptors in biliary epithelium physiology and in non-malignant cholangiopathies is far from complete. Current knowledge suggests a role for epidermal growth factor receptor (EGFR) in cholangiocyte specification and proliferation, and in hepatocyte transdifferentiation into cholangiocytes during liver regeneration to restore biliary epithelium integrity. High expression and activation of EGFR and/or ErbB2 were recently demonstrated in biliary lithiasis and primary sclerosing cholangitis, two cholangiopathies regarded as risk factors for CCA. In CCA, ErbB receptors are frequently overexpressed, leading to tumor progression and low prognosis. Anti-ErbB therapies were efficient only in preclinical trials and have suggested the existence of resistance mechanisms with the need to identify predictive factors of therapy response. This review aims to compile the current knowledge on the functions of ErbB receptors in physiology and physiopathology of the biliary epithelium. (HEPATOLOGY 2017; 00:000-000). ErbB/HER FamilyThe ErbB family of receptor tyrosine kinases comprises epidermal growth factor (EGF) receptor (EGFR; ErbB1/HER1), ErbB2 (HER2), ErbB3 (HER3), and ErbB4 (HER4; Fig. 1). These plasma membrane receptors are composed of an extracellular ligand-binding domain, a transmembrane domain, and an intracellular domain with a conserved tyrosine kinase (TK) domain, with the exception of ErbB3 which holds an inactive TK domain. They bind specific ligands belonging to the EGF family, with the exception of ErbB2 which has no known ligand. Thus, ErbB2 and ErbB3 are activated through heterodimerization with other family members. ErbB ligands are produced as transmembrane precursors and processed
Background/Aims: Angiogenesis is extensively developed in well-differentiated pancreatic neuroendocrine tumours (PanNET) where sunitinib was shown to prolong progression-free survival, leading to nationwide approval. However, clinical experience in patients with grade 3 gastroenteropancreatic neuroendocrine neoplasms (GEPNEN-G3) remains limited. This prospective phase II trial evaluated potential predictive biomarkers of sunitinib activity in patients with advanced GEPNEN-G3. Methods: Sunitinib was given at a dose of 37.5 mg/day as a continuous daily dosing until progression or unacceptable toxicity. Evaluation of activity was based on RECIST1.1. Safety was evaluated according to NCI-CTCAE v4. Pharmacokinetics of sunitinib and its main active metabolite SU12662 were evaluated. All tumour samples were reviewed histologically for tumour differentiation. PDGFRβ, carbonic anhydrase 9, Ki-67, VEGFR2, and p-AKT were quantified using immunohistochemistry and their expression correlated with response by RECIST1.1. Results: Thirty-one patients were included and 26 had available histological tissue. Six and 20 patients presented well-differentiated tumours (NET-G3) and neuroendocrine carcinoma (NEC), respectively. Eighteen patients responded to sunitinib (4 experienced partial responses and 14 tumour stabilization). A high p-AKT expression correlated with lower response to sunitinib (OR 0.94, 95% CI 0.89–0.99, p = 0.04). Safety and PK exposure to sunitinib and SU12662 in these patients were consistent with that reported in PanNET. Conclusion: Sunitinib showed evidence of activity in patients with GEPNEN-G3 with expected toxicity profile. In the NET-G3 and NEC groups, 4/6 and 11/20 patients were responders, respectively. High p-AKT expression predicted a lower response to sunitinib. Our study allowed the identification of a potential biomarker of resistance/sensitivity to sunitinib in aggressive GEPNEN-G3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.