Aging is an established risk factor for vascular diseases, but vascular aging itself may contribute to the progressive deterioration of organ function. Here, we show in aged mice that vascular endothelial growth factor (VEGF) signaling insufficiency, which is caused by increased production of decoy receptors, may drive physiological aging across multiple organ systems. Increasing VEGF signaling prevented age-associated capillary loss, improved organ perfusion and function, and extended life span. Healthier aging was evidenced by favorable metabolism and body composition and amelioration of aging-associated pathologies including hepatic steatosis, sarcopenia, osteoporosis, “inflammaging” (age-related multiorgan chronic inflammation), and increased tumor burden. These results indicate that VEGF signaling insufficiency affects organ aging in mice and suggest that modulating this pathway may result in increased mammalian life span and improved overall health.
Altered glucose reabsorption the facilitative glucose transporter 2 (GLUT2) during diabetes may lead to renal proximal tubule cell (RPTC) injury, inflammation, and interstitial fibrosis. These pathologies are also triggered by activating the cannabinoid-1 receptor (CBR), which contributes to the development of diabetic nephropathy (DN). However, the link between CBR and GLUT2 remains to be determined. Here, we show that chronic peripheral CBR blockade or genetically inactivating CBRs in the RPTCs ameliorated diabetes-induced renal structural and functional changes, kidney inflammation, and tubulointerstitial fibrosis in mice. Inhibition of CBR also downregulated GLUT2 expression, affected the dynamic translocation of GLUT2 to the brush border membrane of RPTCs, and reduced glucose reabsorption. Thus, targeting peripheral CBR or inhibiting GLUT2 dynamics in RPTCs has the potential to treat and ameliorate DN. These findings may support the rationale for the clinical testing of peripherally restricted CBR antagonists or the development of novel renal-specific GLUT2 inhibitors against DN.
CB R plays a key role in inducing mitochondrial fragmentation in RPTCs, leading to a decline in the organelle's function and contributing to the renal tubular injury associated with lipotoxicity and other metabolic diseases.
This work employs adult polyglucosan body disease (APBD) models to explore the efficacy and mechanism of action of the polyglucosan‐reducing compound 144DG11. APBD is a glycogen storage disorder (GSD) caused by glycogen branching enzyme (GBE) deficiency causing accumulation of poorly branched glycogen inclusions called polyglucosans. 144DG11 improved survival and motor parameters in a GBE knockin (Gbeys/ys) APBD mouse model. 144DG11 reduced polyglucosan and glycogen in brain, liver, heart, and peripheral nerve. Indirect calorimetry experiments revealed that 144DG11 increases carbohydrate burn at the expense of fat burn, suggesting metabolic mobilization of pathogenic polyglucosan. At the cellular level, 144DG11 increased glycolytic, mitochondrial, and total ATP production. The molecular target of 144DG11 is the lysosomal membrane protein LAMP1, whose interaction with the compound, similar to LAMP1 knockdown, enhanced autolysosomal degradation of glycogen and lysosomal acidification. 144DG11 also enhanced mitochondrial activity and modulated lysosomal features as revealed by bioenergetic, image‐based phenotyping and proteomics analyses. As an effective lysosomal targeting therapy in a GSD model, 144DG11 could be developed into a safe and efficacious glycogen and lysosomal storage disease therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.