Abstract. This paper presents results of the study on application of two-dimensional, three-state cellular automata with von Neumann neighborhood to perform pattern reconstruction task. Searching efficient cellular automata rules is conducted with use of a genetic algorithm. Experiments show a very good performance of discovered rules in solving the reconstruction task despite minimum radius of neighborhood and only partial knowledge about neighborhood states available. The paper also presents interesting reusability possibilities of discovered rules in reconstructing patterns different but similar to ones used during artificial evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.