The paper is related to the problem of modeling and optimizing power systems supplying, among others, nonlinear loads. A software solution that allows the modeling and simulation of power systems in the frequency domain as well as the sizing and allocation of active power filters has been developed and presented. The basic assumptions for the software development followed by the models of power system components and the optimization assumptions have been described in the paper. On the basis of an example of a low-voltage network, an analysis of the selection of the number and allocation of active power filters was carried out in terms of minimizing losses and investment costs under the assumed conditions for voltage total harmonic distortion (THD) coefficients in the network nodes. The presented examples show that the appropriate software allows for an in-depth analysis of possible solutions and, furthermore, the selection of the optimal one for a specific case, depending on the adopted limitations, expected effects, and investment costs. In addition, a very high computational efficiency of the adopted approach to modeling and simulation has been demonstrated, despite the use of (i) element models for which parameters depend on the operating point (named iterative elements), (ii) active filter models taking into account real harmonics reduction efficiency and power losses, and (iii) a brute force algorithm for optimization.
This paper presents the method of analysis of parametric systems in frequency domain. These systems are also referred to as linear time varying systems (LTV). The article includes a description of an analytical method for determining the frequency response of the first order parametric circuit with non-periodically variable parameters. The results have been illustrated by an example.
The article is devoted to modelling and analysis of linear time-varying (LTV) filters with periodically variable coefficients. A transmission model of such filters has been described. Equations expressing the filter response for a given class of periodic parametric functions have been obtained and presented in a closed form. The results have been illustrated by an example.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.