The INTERSPEECH 2013 Computational Paralinguistics Challenge provides for the first time a unified test-bed for Social Signals such as laughter in speech. It further introduces conflict in group discussions as a new task and deals with autism and its manifestations in speech. Finally, emotion is revisited as task, albeit with a broader range of overall twelve enacted emotional states. In this paper, we describe these four Sub-Challenges, their conditions, baselines, and a new feature set by the openSMILE toolkit, provided to the participants.
This article presents experiments on automatic detection of laughter and fillers, two of the most important nonverbal behavioral cues observed in spoken conversations. The proposed approach is fully automatic and segments audio recordings captured with mobile phones into four types of interval: laughter, filler, speech and silence. The segmentation methods rely not only on probabilistic sequential models (in particular Hidden Markov Models), but also on Statistical Language Models aimed at estimating the a-priori probability of observing a given sequence of the four classes above. The experiments are speaker independent and performed over a total of 8 hours and 25 minutes of data (120 people in total). The results show that F 1 scores up to 0.64 for laughter and 0.58 for fillers can be achieved.
Conversational interaction is a dynamic activity in which participants engage in the construction of meaning and in establishing and maintaining social relationships. Lexical and prosodic accommodation have been observed in many studies as contributing importantly to these dimensions of social interaction. However, while previous works have considered accommodation mechanisms at global levels (for whole conversations, halves and thirds of conversations), this work investigates their evolution through repeated analysis at time intervals of increasing granularity to analyze the dynamics of alignment in a spoken language corpus. Results show that the levels of both prosodic and lexical accommodation fluctuate several times over the course of a conversation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.