Cardiac troponins T and I (cTnT and cTnI) are becoming the serum biomarkers of choice for monitoring potential drug-induced myocardial injury in both clinical and preclinical studies. The utility of cardiac troponins has been mainly demonstrated following the administration of antineoplastic drugs and beta-sympathomimetics, although the routine use of these markers in the monitoring in patients who received anthracyclines therapy is far from settled. Unlike the previous markers, which suffered from numerous shortages, the main advantages of cardiac troponins are their high specificity and sensitivity, wide diagnostic window and the possibility to use commercially available assays in clinical settings as well as in a broad range of laboratory animals. Nevertheless, in spite of vigorous research in this area, a number of questions are still unanswered and these are discussed in this review. The main problems seem to be the lack of standardisation of variety of troponin immunoassays, the assessment of suitable cutoff for drug-induced cardiotoxicity and determination of critical diagnostic window related to the optimal timing of sample collection, which may be drug-dependent.
In our study, the reversion of hypertension and LVH was not dependent on the restoration of NO-synthase activity. Moreover, LV fibrosis and aortic remodelling seem to be more resistant to conditions resulting in regression of LVH. Preserved level of fibrosis in the initial period of LVH regression might result in loss of structural homogeneity and possible functional alterations of the LV.
Plasma cells (PCs) enrichment from bone marrow samples of multiple myeloma (MM) patients is frequently performed by immunomagnetic separation (magnetic activated cell sorting, MACS) using anti-CD138 MicroBeads. The aim of our work was to find optimal strategy for immunomagnetic separation of PCs and determine optimal algorithm of separation techniques for samples with various percentage of neoplastic cells. From 2007 to 2008, selection of PCs using separation programs Possels and Posseld(2) was carried out on 234 bone marrow samples obtained from 208 MM patients. In 2008, an optimal algorithm for separation programs was introduced based on the analysis of the previous experiments. The Possels program is applicable for samples with >10% PCs in the mononuclear fraction, while the Posseld(2) program is used for samples with 5-10% PCs in the mononuclear fraction. Median purity of 92.6% for the positive fraction of cells (range 14.5-99.6%) and median recovery of 60.4% (range 25.7-99.5%) were obtained when the Possels program was applied (n = 45). A total of 80% (36/45) of processed samples had purity of >70%. Median purity for the positive fraction of 83.7% (range 14.3-99.7%) and median recovery of 14.3% (range 3.6-50.0%) were achieved using the Posseld(2) program (n = 99). A total of 68% (67/99) of processed samples reached >70% purity. This separation strategy enabled us to obtain sufficient amounts of highly purified PCs required for subsequent research purposes. The MACS method has been unsuccessful if the percentage of PCs in the initial sample was <5%. These samples were processed by fluorescence activated cell sorting (FACS).
Cardiac troponin T (cTnT) and cardiac troponin I (cTnI) are considered to be the most specific and sensitive biochemical markers of myocardial damage. Troponins have been studied in a wide range of clinical settings, including heart failure; however, there are few data on the role of regulatory proteins in the pathogenesis of heart failure, although a few interesting hypotheses have been proposed. A considerable body of evidence favours the view that alteration of the myocardial thin filament is the primary event leading to defective contractility of the failing myocardium, while the changes in Ca 2+ handling are a compensatory response. A better understanding of the role of regulatory proteins under different physiological and pathological conditions could lead to new therapeutic approaches in heart failure. Recently, calcium sensitisation has been proposed as a novel method by which cardiac performance may be enhanced via an increase in the affinity of troponin C for calcium but without affecting intracellular calcium concentration. To date, the only calcium sensitizer used in clinical practice is levosimendan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.