SBA‐15 (2D hexagonal structure) and KIT‐6 (3D cubic structure) silica materials are used as templates for the synthesis of two different crystalline mesoporous WO3 replicas usable as NO2 gas sensors. High‐resolution transmission electron microscopy (HRTEM) studies reveal that single‐crystal hexagonal rings set up the atomic morphology of the WO3 KIT‐6 replica, whereas the SBA‐15 replica is composed of randomly oriented nanoparticles. A model capable of explaining the KIT‐6 replica mesostructure is described. A small amount of chromium is added to the WO3 matrix in order to enhance sensor response. It is demonstrated that chromium does not form clusters, but well‐distributed centers. Pure WO3 KIT‐6 replica displays a higher response rate as well as a lower response time to NO2 gas than the SBA‐15 replica. This behavior is explained by taking into account that the KIT‐6 replica has a higher surface area as demonstrated by Brunauer–Emmett–Teller analyses and its mesostructure is fully maintained after the screen‐printing step involved in sensors preparation. The presence of chromium in the material results in a shorter response time and improved sensor response to the lowest NO2 concentrations tested. Electrical differences related to mesostructure are reduced as a result of additive introduction.
A mesoporous CaO‐loaded In2O3 material (with Ca/In2O3 ratios ranging from 2.5 to 8.5 at %) has been synthesized and used as resistive gas sensor for the detection of CO2. A nanostructured In2O3 matrix has been obtained by hard template route from the SBA‐15 silica template. Additive presence does not distort the lattice of In2O3, which crystallizes in the Ia3 cubic space group. It has been proved by XRD, HRTEM, Raman and XPS measurements that samples contain not only CaO but also CaCO3 in calcite phase as a consequence of CaO carbonation. Pure In2O3 based sensors are low sensitive to CO2, whereas those containing the additive show an important response in the 300–5000 ppm range of gas concentrations. As seen by DRIFTS, the electrical response arises from the interaction between CO32– and CO2, yielding bicarbonates products. The reaction is water‐assisted, so that hydration of the sensing material ensures sensor reliability whilst its dehydration would inhibit sensor response. The use of CaCO3 instead of CaO does not cause significant differences in electrical and DRIFTS data, which corroborates the important role played by carbonate species in the sensing mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.