No abstract
This paper describes a technique for tracing anonymous packet flooding attacks in the Internet back towards their source. This work is motivated by the increased frequency and sophistication of denial-of-service attacks and by the difficulty in tracing packets with incorrect, or "spoofed", source addresses. In this paper we describe a general purpose traceback mechanism based on probabilistic packet marking in the network. Our approach allows a victim to identify the network path(s) traversed by attack traffic without requiring interactive operational support from Internet Service Providers (ISPs). Moreover, this traceback can be performed "post-mortem" -after an attack has completed. We present an implementation of this technology that is incrementally deployable, (mostly) backwards compatible and can be efficiently implemented using conventional technology.
This paper describes a technique for tracing anonymous packet flooding attacks in the Internet back towards their source. This work is motivated by the increased frequency and sophistication of denial-of-service attacks and by the difficulty in tracing packets with incorrect, or "spoofed", source addresses. In this paper we describe a general purpose traceback mechanism based on probabilistic packet marking in the network. Our approach allows a victim to identify the network path(s) traversed by attack traffic without requiring interactive operational support from Internet Service Providers (ISPs). Moreover, this traceback can be performed "post-mortem" -after an attack has completed. We present an implementation of this technology that is incrementally deployable, (mostly) backwards compatible and can be efficiently implemented using conventional technology.
Abstract. In a snoopy cache multiprocessor system, each processor has a cache in which it stores blocks of data. Each cache is connected to a bus used to communicate with the other caches and with main memory. Each cache monitors the activity on the bus and in its own processor and decides which blocks of data to keep and which to discard. For several of the proposed architectures for snoopy caching systems, we present new on-line algorithms to be used by the caches to decide which blocks to retain and which to drop in order to minimize communication over the bus. We prove that, for any sequence of operations, our algorithms' communication costs are within a constant factor of the minimum required for that sequence; for some of our algorithms we prove that no onqine algorithm has this property with a smaller constant.
We study a class of single-round, sealed-bid auctions for an item in unlimited supply, such as a digital good. We introduce the notion of competitive auctions. A competitive auction is truthful (i.e. encourages bidders to bid their true valuations) and on all inputs yields profit that is within a constant factor of the profit of the optimal single sale price. We justify the use of optimal single price profit as a benchmark for evaluating a competitive auctions profit. We exhibit several randomized competitive auctions and show that there is no symmetric deterministic competitive auction. Our results extend to bounded supply markets, for which we also give competitive auctions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.