Nonisothermal crystallization and melting of the biodegradable thermoplastics poly(3-hydroxybutyrate) (PHB), poly(butylene adipate-co-terephthalate) (PBAT), and a 1:1 PHB/PBAT blend were investigated by differential scanning calorimetry (DSC) over an extensive range of heating/cooling rates (2 to 64°C/min). The different phase transition behavior of the neat components was reflected in the mixture and suggest an immiscible blend. Pseudo-Avrami, Ozawa and Mo classical macrokinetic models were used to describe the evolution of the melt crystallization process. Results suggest that none of these models could be used to predict the experimental results of crystallization kinetics of the blend with sufficient precision for polymer processing applications. However, some methods may be of used for the neat resins over restricted ranges of cooling rate, temperature or conversion (e.g., Ozawa for PHB at low cooling rate, Mo for PBAT).
The objective of this study was to evaluate the biodegradation of Poly (hydroxybutyrate) (PHB) and high-density polyethylene (HDPE) in static systems, using as fluid the seawater of the Coastal Region of the State of Pernambuco (Brazil). The physical and chemical modifications of the polymers, as a function of biodegradation, were evaluated by Fourier transform infrared spectroscopy (FTIR), mechanical tensile assay, differential scanning calorimetry (DSC), gravimetric test, and microbiological analysis. Through the FTIR, it was possible to observe in the PHB a decrease of 23.22% in the carbonyl index for the crystalline phase and 32.30% in the amorphous phase after 180 days, which evidences the effect of the biodegradation present. The mechanical properties of PHB were altered with biodegradation, but the thermal properties remained. During the gravimetric tests, there was a reduction in mass and consequently higher degradation rates for PHB, which is corroborated by the microbiological tests of the system. All characterizations demonstrated that the surface of the HDPE is less susceptible to biofilm formation and, consequently, to the enzymatic action of microorganisms. After 180 days of immersion, no significant microbiological degradation was observed in the HDPE, except for some abiotic alterations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.