This paper investigates the dynamic behavior and the seismic effectiveness of a non-conventional Tuned Mass Damper (TMD) with large mass ratio. Compared with conventional TMD, the device mass is increased up to be comparable with the mass of the structure to be protected, aiming at a better control performance. In order to avoid the introduction of an excessive additional weight, masses already present on the structure are converted into tuned masses, retaining structural or architectural functions beyond the mere control function. A reduced order model is introduced for design purposes and the optimal design of a large mass ratio TMD for seismic applications is then formulated. The design method is specifically developed to implement High-Damping Rubber Bearings (HDRB) to connect the device mass to the main structure, taking advantage of combining stiffness and noticeable damping characteristics. Ground acceleration is modeled as a Gaussian random process with white noise power spectral density. A numerical searching technique is used to obtain the optimal design parameter, the frequency ratio alpha, which minimizes the root-mean-square displacement response of the main structure. The study finally comprises shaking table tests on a 1:5 scale model under a wide selection of accelerograms, both artificial and natural, to assess the seismic effectiveness of the proposed large mass ratio TMD. Copyright (C) 2011 John Wiley & Sons, Ltd
Vibration isolation is well recognized as an effective mitigation strategy for acceleration-sensitive equipment subjected to earthquake. In the present paper, an equipment isolation system with nonlinear hysteretic behaviour is proposed and a methodology for the optimal design is developed. An integrable constitutive model, derived from the mathematical Duhem hysteresis operator, is adopted for the isolation system. The optimization procedure is defined through a dual-criteria approach that involves a transmissibility criterion combined with an energy performance criterion: the former consists in limiting the absolute acceleration of the isolated equipment below an allowable threshold value; the latter, in maximizing the ratio between the energy dissipation due to hysteresis and the input energy to reduce the isolator displacements. The seismic effectiveness of the nonlinear hysteretic isolation system is numerically investigated under natural accelerograms with different frequency content and increasing levels of excitation. Both ground-mounted and floor-mounted equipment items are considered in the analyses; in the second case, the dynamic interaction between the equipment and its supporting structure is taken into account in the design of the isolation system, and its effects on the isolation performance and the structural response are discussed. Comparisons in terms of effectiveness and robustness with a linear isolation system with viscoelastic behaviour are eventually provided
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.