Portal del coneixement obert de la UPC http://upcommons.upc.edu/e-prints Aquesta és una còpia de la versió author's final draft d'un article publicat a la revista Acta geophysica. La publicació final està disponible a Springer a través de
Abstract:The main objective of this study is to determine the maximum daily precipitation in Catalonia for several established return periods with a high spatial resolution. For this purpose, the maximum daily rainfall annual series from 145 pluviometric stations of the Instituto Nacional de Meteorología (INM) (Spanish Weather Service) in Catalonia have been analyzed. Using the L-moments method of Hosking, every series has been fitted by the extreme value distribution function of Gumbel. From this fitting, the maximum daily precipitation for each of the pluviometric stations corresponding to return periods between 2 and 500 years, have been determined. Applying the Cressman method, the spatial analysis of these values has been achieved. Monthly precipitation climatological data, obtained from the application of Geographic Information Systems (GIS) techniques, have been used as the initial field for the analysis. The maximum daily precipitation at 1 km 2 spatial resolution on Catalonia has been objectively determined by the method employed, and structures with wavelength longer than approximately 35 km can be identified. The results show that places where the maximum daily precipitation values are expected are the zone of Guilleries in the Transversal Range, in the highest zones of the Catalan Pyrenees and Cape Creus zone at the northeastern end of Catalonia and in the south, around the Prelittoral Mountain Range between the Mountains of Prades and Montsià. A good fit between the distribution of minimum values and the driest Catalan areas has been found, the lowest values being on the western end of the Central Basin.
The final publication is available at Springer via http://dx.doi.org/10.1007/s00704-015-1476-0Relationship between maximum rainfall rates for time intervals between 5 minutes and 24 hours has been studied from almost a century (1905-2003) of rainfall data registered in the Ebre Observatory (Tarragona, Spain). Intensity-duration-frequency (IDF) curves and its master equation for every return period in the location have been obtained, as well as the probable maximum precipitation (PMP) for all the considered durations. In particular, the value of the 1-day PMP has resulted 415 mm, very similar to previous estimations of this variable for the same location. Extreme rainfall events recorded in this period have been analyzed and classified according to their temporal scale. Besides the three main classes of cases corresponding to the main meteorological scales, local, mesoscale and synoptic, a fourth group constituted by complex events with high intense rates for a large range of durations has been identified also, indicating the contribution of different scale meteorological processes acting together in the origin of the rainfall. A weighted intensity index taking into account the maximum rainfall rate in representative durations of every meteorological scale has been calculated for every extreme rainfall event in order to reflect their complexity.Peer ReviewedPostprint (published version
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.