We consider variants of the restricted assignment problem where a set of jobs has to be assigned to a set of machines, for each job a size and a set of eligible machines is given, and the jobs may only be assigned to eligible machines with the goal of makespan minimization. For the variant with interval restrictions, where the machines can be arranged on a path such that each job is eligible on a subpath, we present the first better than 2-approximation and an improved inapproximability result. In particular, we give a (2 − 1 24 )-approximation and show that no better than 9/8-approximation is possible, unless P=NP. Furthermore, we consider restricted assignment with R resource restrictions and rank D unrelated scheduling. In the former problem, a machine may process a job if it can meet its resource requirements regarding R (renewable) resources. In the latter, the size of a job is dependent on the machine it is assigned to and the corresponding processing time matrix has rank at most D. The problem with interval restrictions includes the 1 resource variant, is encompassed by the 2 resource variant, and regarding approximation the R resource variant is essentially a special case of the rank R + 1 problem. We show that no better than 3/2, 8/7, and 3/2-approximation is possible (unless P=NP) for the 3 resource, 2 resource, and rank 3 variant, respectively. Both the approximation result for the interval case and the inapproximability result for the rank 3 variant are solutions to open challenges stated in previous works. Lastly, we also consider the reverse objective, that is, maximizing the minimal load any machine receives, and achieve similar results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.