Growing popularity of smart and integrated buildings requires a review of methods to optimize the preheat of ventilation air. An integrated system permits using heat ex-changers located in the mechanical room or in the future even using an exterior wall as a heat exchanger. One may ask the question how does the earth-air heat exchanger (EAHX) technology fitts into this function. EAHX has many advantages but also has many unanswered questions. Some of the drawbacks are: a possible entry of radon gas, high humidity in the shoulder seasons as well as the need for two different air intake sources with a choice that depends on the actual weather conditions. While in winter, the EAHX may be used continuously to ensure thermal comfort, in other seasons, its operation must be automatically controlled. To generate the missing information about the EAHX technology we reviewed literature and examined two nearly identical EAHX systems, placed either in ground next to the building or under the basement slab. Effectively, the information provided in this paper, shows advantages of merging both these approaches while the EAHX shoud be placed under the house or near the basement foundation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.