Objective Glucagon is well known to regulate blood glucose but may be equally important for amino acid metabolism. Plasma levels of amino acids are regulated by glucagon-dependent mechanism(s), while amino acids stimulate glucagon secretion from alpha cells, completing the recently described liver-alpha cell axis. The mechanisms underlying the cycle and the possible impact of hepatic steatosis are unclear. Methods We assessed amino acid clearance in vivo in mice treated with a glucagon receptor antagonist (GRA), transgenic mice with 95% reduction in alpha cells, and mice with hepatic steatosis. In addition, we evaluated urea formation in primary hepatocytes from ob/ob mice and humans, and we studied acute metabolic effects of glucagon in perfused rat livers. We also performed RNA sequencing on livers from glucagon receptor knock-out mice and mice with hepatic steatosis. Finally, we measured individual plasma amino acids and glucagon in healthy controls and in two independent cohorts of patients with biopsy-verified non-alcoholic fatty liver disease (NAFLD). Results Amino acid clearance was reduced in mice treated with GRA and mice lacking endogenous glucagon (loss of alpha cells) concomitantly with reduced production of urea. Glucagon administration markedly changed the secretion of rat liver metabolites and within minutes increased urea formation in mice, in perfused rat liver, and in primary human hepatocytes. Transcriptomic analyses revealed that three genes responsible for amino acid catabolism ( Cps1 , Slc7a2 , and Slc38a2 ) were downregulated both in mice with hepatic steatosis and in mice with deletion of the glucagon receptor. Cultured ob/ob hepatocytes produced less urea upon stimulation with mixed amino acids, and amino acid clearance was lower in mice with hepatic steatosis. Glucagon-induced ureagenesis was impaired in perfused rat livers with hepatic steatosis. Patients with NAFLD had hyperglucagonemia and increased levels of glucagonotropic amino acids, including alanine in particular. Both glucagon and alanine levels were reduced after diet-induced reduction in Homeostatic Model Assessment for Insulin Resistance (HOMA-IR, a marker of hepatic steatosis). Conclusions Glucagon regulates amino acid metabolism both non-transcriptionally and transcriptionally. Hepatic steatosis may impair glucagon-dependent enhancement of amino acid catabolism.
Edited by John M. Denu Supplementation with NAD precursors such as nicotinamide riboside (NR) has been shown to enhance mitochondrial function in the liver and to prevent hepatic lipid accumulation in high-fat diet (HFD)-fed rodents. Hepatocyte-specific knockout of the NAD ؉-synthesizing enzyme nicotinamide phosphoribosyltransferase (NAMPT) reduces liver NAD ؉ levels, but the metabolic phenotype of Nampt-deficient hepatocytes in mice is unknown. Here, we assessed Nampt's role in maintaining mitochondrial and metabolic functions in the mouse liver. Using the Cre-LoxP system, we generated hepatocyte-specific Nampt knockout (HNKO) mice, having a 50% reduction of liver NAD ؉ levels. We screened the HNKO mice for signs of metabolic dysfunction following 60% HFD feeding for 20 weeks ؎ NR supplementation and found that NR increases hepatic NAD ؉ levels without affecting fat mass or glucose tolerance in HNKO or WT animals. High-resolution respirometry revealed that NR supplementation of the HNKO mice did not increase state III respiration, which was observed in WT mice following NR supplementation. Mitochondrial oxygen consumption and fatty-acid oxidation were unaltered in primary HNKO hepatocytes. Mitochondria isolated from whole-HNKO livers had only a 20% reduction in NAD ؉ , suggesting that the mitochondrial NAD ؉ pool is less affected by HNKO than the whole-tissue pool. When stimulated with tryptophan in the presence of [ 15 N]glutamine, HNKO hepatocytes had a higher [ 15 N]NAD ؉ enrichment than WT hepatocytes, indicating that HNKO mice compensate through de novo NAD ؉ synthesis. We conclude that NAMPT-deficient hepatocytes can maintain substantial NAD ؉ levels and that the Nampt knockout has only minor consequences for mitochondrial function in the mouse liver.
Aim Neurons in the arcuate nucleus of the hypothalamus are involved in regulation of food intake and energy expenditure, and dysregulation of signalling in these neurons promotes development of obesity. The role of the rate‐limiting enzyme in the NAD+ salvage pathway, nicotinamide phosphoribosyltransferase (NAMPT), for regulation energy homeostasis by the hypothalamus has not been extensively studied. Methods We determined whether Nampt mRNA or protein levels in the hypothalamus of mice were affected by diet‐induced obesity, by fasting and re‐feeding, and by leptin and ghrelin treatment. Primary hypothalamic neurons were treated with FK866, a selective inhibitor of NAMPT, or rAAV carrying shRNA directed against Nampt, and levels of reactive oxygen species (ROS) and mitochondrial respiration were assessed. Fasting and ghrelin‐induced food intake was measured in mice in metabolic cages after intracerebroventricular (ICV)‐mediated FK866 administration. Results NAMPT levels in the hypothalamus were elevated by administration of ghrelin and leptin. In diet‐induced obese mice, both protein and mRNA levels of NAMPT decreased in the hypothalamus. NAMPT inhibition in primary hypothalamic neurons significantly reduced levels of NAD+, increased levels of ROS, and affected the expression of Agrp, Pomc and genes related to mitochondrial function. Finally, ICV‐induced NAMPT inhibition by FK866 did not cause malaise or anhedonia, but completely ablated fasting‐ and ghrelin‐induced increases in food intake. Conclusion Our findings indicate that regulation of NAMPT levels in hypothalamic neurons is important for the control of fasting‐ and ghrelin‐induced food intake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.