Most breast and prostate tumors are hormone-dependent, making it possible to use hormone therapy in patients with these tumors. The design of effective endocrine drugs that block the growth of tumors and have no severe side effects is a challenge. Thereupon, synthetic steroids are promising therapeutic drugs for the treatment of diseases such as hormone-dependent breast and prostate cancers. Here, we describe novel series of steroidal pyrimidines and dihydrotriazines with anticancer activities. A flexible approach to unknown pyrimidine and dihydrotriazine derivatives of steroids with selective control of the heterocyclization pattern is disclosed. A number of 18-nor-5α-androsta-2,13-diene[3,2-d]pyrimidine, androsta-2-ene[3,2-d]pyrimidine, Δ1, 3, 5(10)-estratrieno[16,17-d]pyrimidine, and 17-chloro-16-dihydrotriazine steroids were synthesized by condensations of amidines with β-chlorovinyl aldehydes derived from natural hormones. The synthesized compounds were screened for cytotoxicity against breast cancer cells and showed IC50 values of 7.4 μM and higher. Compounds were tested against prostate cancer cells and exhibited antiproliferative activity with IC50 values of 9.4 μM and higher comparable to that of cisplatin. Lead compound 4a displayed selectivity in ERα-positive breast cancer cells. At 10 μM concentration, this heterosteroid inhibited 50% of the E2-mediated ERα activity and led to partial ERα down-regulation. The ERα reporter assay and immunoblotting were supported by the docking study, which showed the probable binding mode of compound 4a to the estrogen receptor pocket. Thus, heterosteroid 4a proved to be a selective ERα modulator with the highest antiproliferative activity against hormone-dependent breast cancer and can be considered as a candidate for further anticancer drug development. In total, the synthesized heterosteroids may be considered as new promising classes of active anticancer agents.
A facile synthesis of functionalized 3-carbamide pyridazines starting from readily available chlorovinyl aldehydes and oxamic acid thiohydrazides via cascade imination/electrocyclization is reported. In the presence of p-toluenesulfuric acid, various ketones have been efficiently incorporated into the pyridazine derivatives through a two-step sequence involving a Vilsmeier-Haack reaction and imination. The synthetic value of this method has been demonstrated by efficient synthesis of steroidal pyridazines.
A general, practical, and simple synthesis of functionalized 2‐aminopyrimidines starting from β‐chlorovinyl aldehydes and amidines is reported. In the presence of potassium carbonate, various ketones have been efficiently transformed into the pyrimidine derivatives by a two‐step sequence involving the Vilsmeier–Haack reaction followed by a condensation reaction with guanidines. The protocol is distinguished by operational simplicity, inexpensive reagents, and functional‐group tolerance. In many cases, pure solid products can be obtained in high to excellent yields without using column chromatography. The synthetic value of the method was demonstrated by the efficient synthesis of steroidal pyrimidines and a precursor of the antitumor agents Imatinib and Mocetinostat.
A novel approach to 3,4-dicarbonyl-substituted pyrazoles from 1,3-dicarbonyl compounds and oxamic acid thiohydrazides was developed via iodine-promoted cascade imination/halogenation/cyclization/ring contraction reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.