Osteomyelitis, or bone infection, is often induced by antibiotic resistant Staphylococcus aureus strains of bacteria. Although debridement and long-term administration of antibiotics are the gold standard for osteomyelitis treatment, the increase in prevalence of antibiotic resistant bacterial strains limits the ability of clinicians to effectively treat infection. Bacteriophages (phages), viruses that in a lytic state can effectively kill bacteria, have gained recent attention for their high specificity, abundance in nature, and minimal risk of host toxicity. Previously, we have shown that CRISPR-Cas9 genomic editing techniques could be utilized to expand temperate bacteriophage host range and enhance bactericidal activity through modification of the tail fiber protein. In a dermal infection study, these CRISPR-Cas9 phages reduced bacterial load relative to unmodified phage. Thus we hypothesized this temperate bacteriophage, equipped with the CRISPR-Cas9 bactericidal machinery, would be effective at mitigating infection from a biofilm forming S. aureus strain in vitro and in vivo. In vitro, qualitative fluorescent imaging demonstrated superiority of phage to conventional vancomycin and fosfomycin antibiotics against S. aureus biofilm. Quantitative antibiofilm effects increased over time, at least partially, for all fosfomycin, phage, and fosfomycin-phage (dual) therapeutics delivered via alginate hydrogel. We developed an in vivo rat model of osteomyelitis and soft tissue infection that was reproducible and challenging and enabled longitudinal monitoring of infection progression. Using this model, phage (with and without fosfomycin) delivered via alginate hydrogel were successful in reducing soft tissue infection but not bone infection, based on bacteriological, histological, and scanning electron microscopy analyses. Notably, the efficacy of phage at mitigating soft tissue infection was equal to that of high dose fosfomycin. Future research may utilize this model as a platform for evaluation of therapeutic type and dose, and alternate delivery vehicles for osteomyelitis mitigation.
Elastin-like polypeptides (ELP) have been used as a genetically-engineered, biocompatible substitute for elastin. Cell culture coatings prepared using ELP conjugated to low molecular weight polyethyleneimine (PEI) entices cells to form three-dimensional cellular aggregates that mimic their in vivo counterparts. This study seeks to control the deposition of the ELP and ELP-PEI molecules to control the roughness of the final coatings. The two polymers were coated onto three different substrates (glass, polystyrene, tissue-culture polystyrene) and the solution environment was altered by changing the polymer concentration (0.5, 1.0, 1.5 mg/mL) and/or salt concentration (None, 0.2 M phosphate buffered saline) for a total of 36 conditions. Atomic force microscopy (AFM) was used to measure the average roughness (Ra) of the samples and found that ELP coated samples had a higher Ra than their ELP-PEI counterparts. The coatings were tested for stability by performing cell culture media changes every three days for 11 days. AFM showed that the average roughness of the tested samples increased with each media change. To address this, the surfaces were crosslinked using hexamethyl diisocyanate, which minimized the change in surface roughness even when subjected to an intense sonication process. This study provides parameters to achieve elastin-based coatings with controlled roughness that can be used to support stable, long-term in vitro cell culture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.