We introduce the cosine-type approximation processes in abstract Banach space setting. The historical roots of these processes go back to W. W. Rogosinski in 1926. The given new definitions use a cosine operator functions concept. We proved that in presented setting the cosine-type operators possess the order of approximation, which coincide with results known in trigonometric approximation. Moreover, a general method for factorization of certain linear combinations of cosine operator functions is presented. The given method allows to find the order of approximation using the higher order modulus of continuity. Also applications for the different type of approximations are given.
<p style='text-indent:20px;'>In this article, we investigate the approximation properties of general cosine-type operators, especially Rogosinski-type operators, in Banach space when there is a cosine operator function. We apply our approach to both trigonometric Rogosinski operators and Shannon sampling operators. Moreover, for some operators, we derived orders of approximation that include numerical estimates of the constants contained in it. We announced a new direction for approximation issues in the Mellin framework.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.