The excretion of the compound was principally via urine, giving dose to the kidney and the urinary bladder wall. As SSTR2 is the most frequently expressed somatostatin receptor and (68)Ga-DOTANOC has high affinity to it, this compound might play an important role in PET oncology in the future. The dosimetric evaluation carried out by our team demonstrated that (68)Ga-DOTANOC delivers a dose to organs comparable to, and even lower than, analogous diagnostic compounds.
Several studies provided evidence of clinical benefit from the implementation of dosimetry in PRRT, indicating the potential contribution of this approach to reducing severe toxicity and/or reducing undertreatment that commonly occurs. Prospective trials, possibly multicentre, with larger numbers of patients undergoing quantitative dosimetry and with standardized methodologies should be carried out to definitively provide robust predictive paradigms to establish effective tailored PRRT.
Kidney dosimetry in 177Lu and 90Y PRRT requires 3 to 6 whole-body/SPECT scans to extrapolate the peptide kinetics, and it is considered time and resource consuming. We investigated the most adequate timing for imaging and time-activity interpolating curve, as well as the performance of a simplified dosimetry, by means of just 1-2 scans. Finally the influence of risk factors and of the peptide (DOTATOC versus DOTATATE) is considered. 28 patients treated at first cycle with 177Lu DOTATATE and 30 with 177Lu DOTATOC underwent SPECT scans at 2 and 6 hours, 1, 2, and 3 days after the radiopharmaceutical injection. Dose was calculated with our simplified method, as well as the ones most used in the clinic, that is, trapezoids, monoexponential, and biexponential functions. The same was done skipping the 6 h and the 3 d points. We found that data should be collected until 100 h for 177Lu therapy and 70 h for 90Y therapy, otherwise the dose calculation is strongly influenced by the curve interpolating the data and should be carefully chosen.
Risk factors (hypertension, diabetes) cause a rather statistically significant 20% increase in dose (t-test, P < 0.10), with DOTATATE affecting an increase of 25% compared to DOTATOC (t-test, P < 0.05).
Early manifestation of breast cancer is often very subtle and is displayed in a complex and variable pattern of normal anatomy that may obscure the disease. The use of dual-energy techniques, that can remove the structural noise, and contrast media, that enhance the region surrounding the tumour, could help us to improve the detectability of the lesions. The aim of this work is to investigate the use of an iodine-based contrast medium in mammography with two different double exposure techniques: K-edge subtraction mammography and temporal subtraction mammography. Both techniques have been investigated by using an ideal source, like monochromatic beams produced at a synchrotron radiation facility and a clinical digital mammography system. A dedicated three-component phantom containing cavities filled with different iodine concentrations has been developed and used for measurements. For each technique, information about the minimum iodine concentration, which provides a significant enhancement of the detectability of the pathology by minimizing the risk due to high dose and high concentration of contrast medium, has been obtained. In particular, for cavities of 5 and 8 mm in diameter filled with iodine solutions, the minimum concentration needed to obtain a contrast-to-noise ratio of 5 with a mean glandular dose of 2 mGy has been calculated. The minimum concentrations estimated with monochromatic beams and K-edge subtraction mammography are 0.9 mg ml(-1) and 1.34 mg ml(-1) for the biggest and smallest details, respectively, while for temporal subtraction mammography they are 0.84 mg ml(-1) and 1.31 mg ml(-1). With the conventional clinical system the minimum concentrations for the K-edge subtraction mammography are 4.13 mg ml(-1) (8 mm diameter) and 5.75 mg ml(-1) (5 mm diameter), while for the temporal subtraction mammography they are 1.01 mg ml(-1) (8 mm diameter) and 1.57 mg ml(-1) (5 mm diameter).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.