BackgroundMycoplasma synoviae (MS) is an important poultry pathogen worldwide. This bacterium may cause eggshell changes including an altered shell surface, thinning, and increased translucency in different areas, which leads to a greater incidence of eggshell cracks and breaks. In the present study the association between experimental infection of birds with two field strains of MS from different genotypes and the production of abnormal eggs is described. The analysis of those eggshells using a full-field optical coherence tomography (FF OCT) scanner is also reported.ResultsEggshell samples were obtained from three experimental groups of chickens: one control and two infected tracheally with field strains of MS which produced abnormal eggs. In both experimental groups infected with MS a reduction of mean daily egg production by 11% was observed compared to the control group, which started at 21 to 42 dpi. Eggshell apex abnormalities increased to 24.5% of eggs and in some cases, soft-shelled eggs were produced. This study provides the first analysis of shells from anomalous eggs carried out using FF OCT, which allows three-dimensional structural imaging of an investigated sample at micrometre scale. FF OCT showed ultrastructural changes in eggshells and a smaller number of pores on the entire surface of the affected shells.ConclusionsThe eggshell pathology and the concomitant egg production losses that result from infections highlight the economic significance of MS in commercial poultry. There are differences in the strains of MS which may induce eggshell apex abnormalities (EAA) and egg production losses. The use of FF OCT, which is a noninvasive measurement method based on analysis of the light backscattered from the measured object, will confer the ability to control the quality of eggshells in flocks infected with MS.
Mycoplasma gallisepticum is one of the most important poultry pathogens that can also infect wild birds, but knowledge of potential non-poultry hosts that could be reservoirs of M. gallisepticum is limited. For the paper presented here, we screened three databases (PubMed, Scopus, and the Web of Knowledge) to find articles on the occurrence of M. gallisepticum in different wild bird species that were published between 1951 and 2018. Among 314 studies found, we selected and included 50 original articles that met the pre-established criteria. From those publications we extracted the following information: name of the first author, year of publication, year of sample isolation, country, region, number of birds sampled, number of birds tested by each method, number of positive samples, diagnostic criteria, and if birds were wild or captive. Because different detection techniques were used to confirm the presence of M. gallisepticum in one animal, we decided to perform the meta analyses separately for each method. The estimated prevalence of M. gallisepticum in wild birds was different by each method of detection. Our summary revealed that M. gallisepticum was present in 56 species of bird belonging to 11 different orders, of which 21 species were reported suffering both past and current infection. Our work provides information on wild bird species that could be considered potential reservoirs or carriers of M. gallisepticum and could be helpful to set the direction for future research on the spread and phylogeny of M. gallisepticum in different hosts.
The respiratory tracts of turkeys play important roles in the overall health and performance of the birds. Understanding the bacterial communities present in the respiratory tracts of turkeys can be helpful to better understand the interactions between commensal or symbiotic microorganisms and other pathogenic bacteria or viral infections. The aim of this study was the characterization of the bacterial communities of upper respiratory tracks in commercial turkeys using NGS sequencing by the amplification of 16S rRNA gene with primers designed for hypervariable regions V3 and V4 (MiSeq, Illumina). From 10 phyla identified in upper respiratory tract in turkeys, the most dominated phyla were Firmicutes and Proteobacteria. Differences in composition of bacterial diversity were found at the family and genus level. At the genus level, the turkey sequences present in respiratory tract represent 144 established bacteria. Several respiratory pathogens that contribute to the development of infections in the respiratory system of birds were identified, including the presence of Ornithobacterium and Mycoplasma OTUs. These results obtained in this study supply information about bacterial composition and diversity of the turkey upper respiratory tract. Knowledge about bacteria present in the respiratory tract and the roles they can play in infections can be useful in controlling, diagnosing and treating commercial turkey flocks.
Mycoplasma synoviae (MS) remains a serious concern in production of poultry and affects world production of chickens and turkeys. Loop-mediated isothermal amplification (LAMP) of DNA has been recently used for the identification of different economically important avian pathogens. The aim of this study was to develop LAMP for simple and inexpensive detection of MS strains in poultry using specifically designed primers targeting hemagglutin A (vlh) gene. The assay was conducted in a water bath for 1 h at 63 °C. The results were visualized after addition of SYBR Green® fluorescent dye. LAMP was specific exclusively for MS without cross-reactivity with other Mycoplasma species. The sensitivity of LAMP was determined as 10−1 CFU/ml and was 1,000 times higher than MS-specific polymerase chain reaction. LAMP assay was conducted on 18 MS field strains to ensure its reliability and usefulness. This is the first report on LAMP development and application for the rapid detection of MS isolated from chickens. This simple method may be applied by diagnostic laboratories without access to expensive equipment.
Clin Genet 1993: 44: 53–55. © Munksgaard, 1993
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.