Tim-3 is a T helper type 1 (T(H)1)-specific cell surface molecule that seems to regulate T(H)1 responses and the induction of peripheral tolerance. However, the identity of the Tim-3 ligand and the mechanism by which this ligand inhibits the function of effector T(H)1 cells remain unknown. Here we show that galectin-9 is the Tim-3 ligand. Galectin-9-induced intracellular calcium flux, aggregation and death of T(H)1 cells were Tim-3-dependent in vitro, and administration of galectin-9 in vivo resulted in selective loss of interferon-gamma-producing cells and suppression of T(H)1 autoimmunity. These data suggest that the Tim-3-galectin-9 pathway may have evolved to ensure effective termination of effector T(H)1 cells.
T helper type 1 (T(H)1) immune responses are central in cell-mediated immunity, and a T(H)1-specific cell surface molecule called Tim-3 (T cell immunoglobulin domain, mucin domain) has been identified. Here we report the identification of a secreted form of Tim-3 that contains only the immunoglobulin (Ig) variable (V) domain of the full-length molecule. Fusion proteins (Tim-3-Ig) of both Tim-3 isoforms specifically bound CD4(+) T cells, indicating that a Tim-3 ligand is expressed on CD4(+) T cells. Administration of Tim-3-Ig to immunized mice caused hyperproliferation of T(H)1 cells and T(H)1 cytokine release. Tim-3-Ig also abrogated tolerance induction in T(H)1 cells, and Tim-3-deficient mice were refractory to the induction of high-dose tolerance. These data indicate that interaction of Tim-3 with Tim-3 ligand may serve to inhibit effector T(H)1 cells during a normal immune response and may be crucial for the induction of peripheral tolerance.
The identification of myelin oligodendrocyte glycoprotein (MOG) as a target for autoantibody-mediated demyelination in experimental autoimmune encephalomyelitis (EAE) resulted in the re-evaluation of the role of B cell responses to myelin autoantigens in the immunopathogenesis of multiple sclerosis. MOG is a central nervous system specific myelin glycoprotein that is expressed preferentially on the outermost surface of the myelin sheath. Although MOG is only a minor component of CNS myelin it is highly immunogenic, inducing severe EAE in both rodents and primates. In rat and marmoset models of MOG-induced EAE demyelination is antibody-dependent and reproduces the immunopathology seen in many cases of MS. In contrast, in mice inflammation in the CNS can result in demyelination in the absence of a MOG-specific B cell response, although if present this will enhance disease severity and demyelination. Clinical studies indicate that autoimmune responses to MOG are enhanced in many CNS diseases and implicate MOG-specific B cell responses in the immunopathogenesis of multiple sclerosis. This review provides a summary of our current understanding of MOG as a target autoantigen in EAE and MS, and addresses the crucial question as to how immune tolerance to MOG may be maintained in the healthy individual.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.