Stromal-derived factor-1 (SDF-1) is a critical chemokine for endothelial progenitor cell (EPC) recruitment to areas of ischemia, allowing these cells to participate in compensatory angiogenesis. The SDF-1 receptor, CXCR4, is expressed in developing blood vessels as well as on CD34؉ EPCs. We describe that picomolar and nanomolar concentrations of SDF-1 differentially influence neovascularization, inducing CD34؉ cell migration and EPC tube formation. CD34؉ cells isolated from diabetic patients demonstrate a marked defect in migration to SDF-1. This defect is associated, in some but not all patients, with a cell surface activity of CD26/dipeptidyl peptidase IV, an enzyme that inactivates SDF-1. Diabetic CD34؉ cells also do not migrate in response to vascular endothelial growth factor and are structurally rigid. However, incubating CD34؉ cells with a nitric oxide (NO) donor corrects this migration defect and corrects the cell deformability. In addition, exogenous NO alters vasodilator-stimulated phosphoprotein and mammalian-enabled distribution in EPCs. These data support a common downstream cytoskeletal alteration in diabetic CD34؉ cells that is independent of growth factor receptor activation and is correctable with exogenous NO. This inability of diabetic EPCs to respond to SDF-1 may contribute to aberrant tissue vascularization and endothelial repair in diabetic patients. Diabetes 55: 102-109, 2006
Uric acid affects endothelial and adipose cell function and has been linked to diseases such as hypertension, metabolic syndrome, and cardiovascular disease. Interestingly uric acid has been shown to increase endothelial progenitor cell (EPC) mobilization, a potential mechanism to repair endothelial injury. Since EPC mobilization is dependent on activity of the enzyme CD26/dipeptidyl peptidase (DPP)IV, we examined the effect uric acid has on CD26/DPPIV activity. Uric acid inhibited the CD26/DPPIV associated with human umbilical vein endothelial cells but not human recombinant (hr)CD26/DPPIV. However, triuret, a product of uric acid and peroxynitrite, could inhibit cell associated and hrCD26/DPPIV. Increasing or decreasing intracellular peroxynitrite levels enhanced or decreased the ability of uric acid to inhibit cell associated CD26/DPPIV respectively. Last, protein modeling demonstrates how triuret can act as a small molecule inhibitor of CD26/DPPIV activity. This is the first time that uric acid or a uric acid reaction product has been shown to affect enzymatic activity and suggests a novel avenue of research in the role of uric acid in the development of clinically important diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.