Protein kinase A (PKA) is a biologically important enzyme for cell regulation, often referred to as the “central kinase”. An immobilized PKA that retains substrate specificity and activity would be a useful tool for laboratory scientists, enabling targeted phosphorylation without interference from downstream kinase contamination or kinase autophosphorylation in sensitive assays. Moreover, it might also provide the benefits of robustness and reusability that are often associated with immobilized enzyme preparations. In this work, we describe the creation of a recombinant PKA fusion protein that incorporates the HaloTag covalent immobilization system. We demonstrate that protein fusion design, including affinity tag placement, is critical for optimal heterologous expression in Escherichia coli. Furthermore, we demonstrate various applications of our immobilized PKA, including the phosphorylation of recombinant PKA substrates, such as vasodilator-stimulated phosphoprotein, and endogenous PKA substrates in a cell lysate. This immobilized PKA also possesses robust activity and reusability over multiple trials. This work holds promise as a generalizable strategy for the production and application of immobilized protein kinases.
Protein Kinase A (PKA) is a biologically important enzyme for cell regulation, often referred to as the “central kinase”. An immobilized PKA that retains substrate specificity and activity would be a useful tool for laboratory scientists, enabling targeted phosphorylation without interference from downstream kinase contamination or kinase autophosphorylation in sensitive assays. Moreover, it might also offer the benefits of robustness and reusability that are often associated with immobilized enzyme preparations. In this work, we describe the creation of a recombinant PKA fusion protein that incorporates the HaloTag covalent immobilization system. We demonstrate that protein fusion design, including affinity tag placement, is critical for optimal heterologous expression in E. coli. Furthermore, we demonstrate various applications of our immobilized PKA, including the phosphorylation of recombinant PKA substrates such as VASP and endogenous PKA substrates in a cell lysate. These results hold promise as a generalizable strategy for the production and application of immobilized protein kinases involving specific sequestration of a fusion protein by a solid support material.
Borrelial pathogens are vector-borne etiological agents of Lyme disease, relapsing fever, andBorrelia miyamotoidisease. These spirochetes each encode several surface-localized lipoproteins that bind to components of the human complement system. BBK32 is an example of a borrelial lipoprotein that protects the Lyme disease spirochete from complement-mediated attack. The complement inhibitory activity of BBK32 arises from an alpha helical C-terminal domain that interacts directly with the initiating protease of the classical pathway, C1r.Borrelia miyamotoispirochetes encode BBK32 orthologs termed FbpA and FbpB, and these proteins also inhibit C1r, albeit via distinct recognition mechanisms. The C1r-inhibitory activities of a third ortholog termed FbpC, which is found exclusively in relapsing fever spirochetes, remains unknown. Here we report the crystal structure of the C-terminal domain ofB. hermsiiFbpC to a limiting resolution of 1.5 Å. Surface plasmon resonance studies and assays of complement function demonstrate that FbpC retains potent BBK32-like anti-complement activities. Based on the structure of FbpC, we hypothesized that conformational dynamics of the complement inhibitory domains of borrelial C1r inhibitors may differ. To test this, we utilized the crystal structures of the C-terminal domains of BBK32, FbpA, FbpB, and FbpC to carry out 1 µs molecular dynamics simulations, which revealed borrelial C1r inhibitors adopt energetically favored open and closed states defined by two functionally critical regions. This study advances our understanding of how protein dynamics contribute to the function of bacterial immune evasion proteins and reveals a surprising plasticity in the structures of borrelial C1r inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.