Background. The usefulness of mHealth in helping to target face-to-face interventions for chronic pain more effectively remains unclear. In the present study, we aim to test whether the Pain Monitor mobile phone application (app) is well accepted by clinicians, and can help improve existent medical treatments for patients with chronic musculoskeletal pain. Regarding this last goal, we compared three treatment conditions, namely usual treatment, usual treatment with an app without alarms and usual treatment with an app with alarms. All treatments lasted one month. The three treatments were compared for all outcomes, i.e., pain severity and interference, fatigue, depressed mood, anxiety and anger. Methods. In this randomized controlled trial, the usual monitoring method (i.e., onsite; n = 44) was compared with daily ecological momentary assessment using the Pain Monitor app—both with (n = 43) and without alarms (n = 45). Alarms were sent to the clinicians in the presence of pre-established undesired clinical events and could be used to make treatment adjustments throughout the one-month study. Results. With the exception of anger, clinically significant changes (CSC; 30% improvement) were greater in the app + alarm condition across outcomes (e.g., 43.6% of patients experienced a CSC in depressed mood in the app + alarm condition, which occurred in less than 29% of patients in the other groups). The clinicians were willing to use the app, especially the version with alarms. Conclusions. The use of apps may have some benefits in individual health care, especially when using alarms to tailor treatments.
Recent anatomical discoveries indicate the importance of identifying membranes and compartments surrounding peripheral nerves into which local anesthetic agents can be injected and continuous nerve block catheters placed during regional anesthetic procedures. However, current markers used in anatomical studies have multiple drawbacks, specifically extravasation into noninjected locations, which can result in inadequate treatment. We studied a readily-available new marker, heparinized blood solution (HBS), which is easy to identify by microscopy and can remain in the nerve compartment into which it is deposited without distorting the tissue. We collected blood from 22 patients and prepared it as HBS. This was then injected into four fresh cadavers as in routine clinical practice for ultrasound-guided nerve blocks to form a so-called "doughnut" by "hydro-dissecting" at 32 sites. All samples, including nerves and neighboring tissues, were then prepared and examined by light microscopy. Although no deliberate intraneural injection was attempted, the marker was identified inside all the nerve compartments except the fascicles. Apart from leaking through the needle entry site in some instances, there was no extravasation of the HBS into neighboring nerve compartments in either direction. The tissues were not distorted and the erythrocytes did not form a thrombus. Nerve membranes and compartments could be clearly identified with routine staining. This technique enabled us to study the longitudinal and circumferential spread in all nerve compartments and to collect data for better interpretation of factors influencing an anesthetic nerve block and situations in which complications could possibly arise. HBS seemed superior to other markers because it did not leave the compartments into which it had been injected, did not distort the tissue, and was easily visible under the light microscope. Clin. Anat., 31:1050-1057, 2018. © 2018 Wiley Periodicals, Inc.
Background: Chronic pain has become a major health problem across the world, especially in older adults. Unfortunately, the effectiveness of medical interventions is modest. Some have argued that assessment strategies should be improved if the impact of medical interventions is to be improved. Ecological momentary assessment using smartphones is now considered the gold standard in monitoring in health settings, including chronic pain. However, to the best of our knowledge, there is no randomized controlled trial to show that telemonitoring using a smartphone app can indeed improve the effectiveness of medical treatments in adults with chronic pain. The goal of this study will be to explore the effects of using a smartphone app for telemonitoring adults with chronic pain.
Somatic and visceral nociceptive signals travel via different pathways to reach the spinal cord. Additionally, signals regulating visceral blood flow and gastrointestinal tract (GIT) motility travel via efferent sympathetic nerves. To offer optimal pain relief and increase GIT motility and blood flow, we should interfere with all these pathways. These include the afferent nerves that travel with the sympathetic trunks, the somatic fibers that innervate the abdominal wall and part of the parietal peritoneum, and the sympathetic efferent fibers. All somatic and visceral afferent neural and sympathetic efferent pathways are effectively blocked by appropriately placed segmental thoracic epidural blocks (TEBs), whereas well-placed truncal fascial plane blocks evidently do not consistently block the afferent visceral neural pathways nor the sympathetic efferent nerves. It is generally accepted that it would be beneficial to counter the effects of the stress response on the GIT, therefore most enhanced recovery after surgery protocols involve TEB. The TEB failure rate, however, can be high, enticing practitioners to resort to truncal fascial plane blocks. In this educational article, we discuss the differences between visceral and somatic pain, their management and the clinical implications of these differences.
Regional anesthesia techniques, such as nerve blocks, are routinely used in humans and can contribute to multimodal approaches to pain management in research animals. Ultrasound guidance is an emerging aspect of regional anesthesia that has the potential to optimize local delivery and distribution of anesthetic agents, thereby reducing the amounts of these agents that must be administered. The authors developed an ultrasound-guided technique for effective block of the axillary brachial plexus in rabbits. They used this technique to carry out nerve block in 14 rabbits. The procedure was accomplished in a relatively short amount of time and achieved successful nerve block in all rabbits with no adverse effects. Sonographic visualization of the distribution of the local anesthetic ropivacaine led to administration of smaller anesthetic doses in eight of the rabbits without affecting the duration of nerve block. The authors conclude that their technique is feasible and safe and provides effective analgesia of the thoracic limb in rabbits. They recommend that this technique be integrated into multimodal approaches to pain management in rabbits undergoing thoracic limb surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.