Slow spike and wave discharges (0.5-4 Hz) are a feature of many epilepsies. They are linked to pathology of the thalamocortical axis and a thalamic mechanism has been elegantly described. Here we present evidence for a separate generator in local circuits of associational areas of neocortex manifest from a background, sleep-associated delta rhythm in rat. Loss of tonic neuromodulatory excitation, mediated by nicotinic acetylcholine or serotonin (5HT3A) receptors, of 5HT3-immunopositive interneurons caused an increase in amplitude and slowing of the delta rhythm until each period became the "wave" component of the spike and wave discharge. As with the normal delta rhythm, the wave of a spike and wave discharge originated in cortical layer 5. In contrast, the "spike" component of the spike and wave discharge originated from a relative failure of fast inhibition in layers 2/3-switching pyramidal cell action potential outputs from single, sparse spiking during delta rhythms to brief, intense burst spiking, phase-locked to the field spike. The mechanisms underlying this loss of superficial layer fast inhibition, and a concomitant increase in slow inhibition, appeared to be precipitated by a loss of neuropeptide Y (NPY)-mediated local circuit inhibition and a subsequent increase in vasoactive intestinal peptide (VIP)-mediated disinhibition. Blockade of NPY Y1 receptors was sufficient to generate spike and wave discharges, whereas blockade of VIP receptors almost completely abolished this form of epileptiform activity. These data suggest that aberrant, activity-dependent neuropeptide corelease can have catastrophic effects on neocortical dynamics.
Cell adhesion-mediated drug resistance (CAM-DR) by the bone marrow (BM) is fundamental to multiple myeloma (MM) propagation and survival. Targeting BM protection to increase the efficacy of current anti-myeloma treatment has not been extensively pursued. To extend the understanding of CAM-DR, we hypothesized that the cytotoxic effects of novel anti-myeloma agents may be abrogated by the presence of BM stroma cells (BMSCs) and restored by addition of the CXCL12 antagonist NOX-A12 or the CXCR4 inhibitor plerixafor. Following this hypothesis, we evaluated different anti-myeloma agents alone, with BMSCs and when combined with plerixafor or NOX-A12. We verified CXCR4, CD49d (also termed ITGA4) and CD44 as essential mediators of BM adhesion on MM cells. Additionally, we show that CXCR7, the second receptor of stromal-derived-factor-1 (CXCL12), is highly expressed in active MM. Co-culture proved that co-treatment with plerixafor or NOX-A12, the latter inhibiting CXCR4 and CXCR7, functionally interfered with MM chemotaxis to the BM. This led to the resensitization of MM cells to the anti-myeloma agents vorinostat and pomalidomide and both proteasome inhibitors bortezomib and carfilzomib. Within a multicentre phase I/II study, NOX-A12 was tested in combination with bortezomib-dexamethasone, underlining the feasibility of NOX-A12 as an active add-on agent to antagonize myeloma CAM-DR.
Fast ripples (FRs) are network oscillations, defined variously as having frequencies of > 150 to > 250 Hz, with a controversial mechanism. FRs appear to indicate a propensity of cortical tissue to originate seizures. Here, we demonstrate field oscillations, at up to 400 Hz, in spontaneously epileptic human cortical tissue in vitro, and present a network model that could explain FRs themselves, and their relation to ‘ordinary’ (slower) ripples. We performed network simulations with model pyramidal neurons, having axons electrically coupled. Ripples (< 250 Hz) were favored when conduction of action potentials, axon to axon, was reliable. Whereas ripple population activity was periodic, firing of individual axons varied in relative phase. A switch from ripples to FRs took place when an ectopic spike occurred in a cell coupled to another cell, itself multiply coupled to others. Propagation could then start in one direction only, a condition suitable for re-entry. The resulting oscillations were > 250 Hz, were sustained or interrupted, and had little jitter in the firing of individual axons. The form of model FR was similar to spontaneously occurring FRs in excised human epileptic tissue. In vitro, FRs were suppressed by a gap junction blocker. Our data suggest that a given network can produce ripples, FRs, or both, via gap junctions, and that FRs are favored by clusters of axonal gap junctions. If axonal gap junctions indeed occur in epileptic tissue, and are mediated by connexin 26 (recently shown to mediate coupling between immature neocortical pyramidal cells), then this prediction is testable.
High-frequency neuronal population oscillations (HFO, 130-180 Hz) are robustly potentiated by subanesthetic doses of ketamine. This frequency band has been recorded in functionally and neuroanatomically diverse cortical and subcortical regions, notably ventral striatal areas. However, the locus of generation remains largely unknown. There is compelling evidence that olfactory regions can drive oscillations in distant areas. Here we tested the hypothesis that the olfactory bulb (OB) is a locus for the generation of HFO following a subanesthetic dose of ketamine. The effect of ketamine on the electrophysiological activity of the OB and ventral striatum of male Wistar rats was examined using field potential and unit recordings, local inhibition, naris blockade, current source density and causality estimates. Ketamine-HFO was of larger magnitude and was phase-advanced in the OB relative to ventral striatum. Granger causality analysis was consistent with the OB as the source of HFO. Unilateral local inhibition of the OB and naris blockade both attenuated HFO recorded locally and in the ventral striatum. Within the OB, current source density analysis revealed HFO current dipoles close to the mitral layer and unit firing of mitral/tufted cells was phase locked to HFO. Our results reveal the OB as a source of ketamine-HFO which can contribute to HFO in the ventral striatum, known to project diffusely to many other brain regions. These findings provide a new conceptual understanding on how changes in olfactory system function may have implications for neurological disorders involving NMDA receptor dysfunction such as schizophrenia and depression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.