Pemphigus vulgaris (PV) is an autoimmune blistering disease of skin and mucous membranes caused by autoantibodies to the desmoglein (DSG) family proteins DSG3 and DSG1, leading to loss of keratinocyte cell adhesion. To learn more about pathogenic PV autoantibodies, we isolated 15 IgG antibodies specific for DSG3 from 2 PV patients. Three antibodies disrupted keratinocyte monolayers in vitro, and 2 were pathogenic in a passive transfer model in neonatal mice. The epitopes recognized by the pathogenic antibodies were mapped to the DSG3 extracellular 1 (EC1) and EC2 subdomains, regions involved in cis-adhesive interactions. Using a site-specific serological assay, we found that the cis-adhesive interface on EC1 recognized by the pathogenic antibody PVA224 is the primary target of the autoantibodies present in the serum of PV patients. The autoantibodies isolated used different heavy-and light-chain variable region genes and carried high levels of somatic mutations in complementary-determining regions, consistent with antigenic selection. Remarkably, binding to DSG3 was lost when somatic mutations were reverted to the germline sequence. These findings identify the cis-adhesive interface of DSG3 as the immunodominant region targeted by pathogenic antibodies in PV and indicate that autoreactivity relies on somatic mutations generated in the response to an antigen unrelated to DSG3.
CD4+CD25+ T regulatory cells may play a role in the different clinical presentations of chronic hepatitis C virus (HCV) infection by suppressing CD4+ T cell responses. Peripheral CD4+CD25+ T cells from chronic HCV carriers with normal and abnormal alanine aminotransferase (ALT) were analysed for specificity and effect on HCV-specific CD4+ T cell reactivity by flow cytometry for intracellular cytokine production and proliferation assay. HCV-specific CD4+CD25(+high) T cells consistently produced transforming growth factor (TGF)-beta but only limited amounts of interleukin (IL)-10 and no IL-2 and interferon (IFN)-gamma. The HCV-specific TGF-beta response by CD4+CD25(+high) T cells was significantly greater in patients with normal ALT compared to patients with elevated ALT. In addition, a significant inverse correlation was found between the HCV-specific TGF-beta response by CD4+CD25(+high) T cells and liver inflammation. In peripheral blood mononuclear cells (PBMC), both HCV antigen-induced IFN-gamma production and proliferation of CD4+ T cells were greater in patients with elevated ALT compared with patients with normal ALT. Depletion of CD4+CD25+ cells from PBMC resulted in an increase of both IFN-gamma production and proliferation of HCV-specific CD4+ T cells that was significantly greater in patients with normal ALT levels compared with patients with elevated ALT. In addition, CD4+CD25+ T cells from patients with normal ALT levels proved to be significantly more potent to suppress CD4+ T cell reactivity with respect to those from patients with elevated ALT. In conclusion, these data support the hypothesis that CD4+CD25+ cells may play a role in controlling chronic inflammatory response and hepatic damage in chronic HCV carriers.
Molecular modeling studies and an updated highly predictive 3-D QSAR model led to the discovery of exceptionally potent indolyl aryl sulfones (IASs) characterized by the presence of either a pyrrolidyn-2-one nucleus at the indole-2-carboxamide or some substituents at the indole-2-carbohydrazide. Compounds 7 and 9 were found active in the sub-nanomolar range of concentration in both MT-4 and C8166 cell-based anti-HIV assays. These compounds, and in particular compound 9, also showed excellent inhibitory activity against both HIV-112 and HIV-AB1 primary isolates in lymphocytes and against HIV WT in macrophages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.