CD44 is a novel molecular player that regulates structure and function of the synapse. It affects excitatory synaptic transmission, dendritic spine shape, number of functional synapses, and activity-dependent neuronal plasticity. These functions are exerted via the regulation of small Rho GTPases.
Communication of cells with their extracellular environment is crucial to fulfill their function in physiological and pathophysiological conditions. The literature data provide evidence that such a communication is also important in case of astrocytes. Mechanisms that contribute to the interaction between astrocytes and extracellular matrix (ECM) proteins are still poorly understood. Hyaluronan is the main component of ECM in the brain, where its major receptor protein CD44 is expressed by a subset of astrocytes. Considering the fact that functions of astrocytes are tightly coupled with changes in their morphology (e.g.: glutamate clearance in the synaptic cleft, migration, astrogliosis), we investigated the influence of hyaluronan cleavage by hyaluronidase, knockdown of CD44 by specific shRNA and CD44 overexpression on astrocyte morphology. Our results show that hyaluronidase treatment, as well as knockdown of CD44, in astrocytes result in a “stellate”-like morphology, whereas overexpression of CD44 causes an increase in cell body size and changes the shape of astrocytes into flattened cells. Moreover, as a dynamic reorganization of the actin cytoskeleton is supposed to be responsible for morphological changes of cells, and this reorganization is controlled by small GTPases of the Rho family, we hypothesized that GTPase Rac1 acts as a downstream effector for hyaluronan and CD44 in astrocytes. We used FRET-based biosensor and a dominant negative mutant of Rac1 to investigate the involvement of Rac1 activity in hyaluronidase- and CD44-dependent morphological changes of astrocytes. Both, hyaluronidase treatment and knockdown of CD44, enhances Rac1 activity while overexpression of CD44 reduces the activity state in astrocytes. Furthermore, morphological changes were blocked by specific inhibition of Rac1 activity. These findings indicate for the first time that regulation of Rac1 activity is responsible for hyaluronidase and CD44-driven morphological changes of astrocytes.
The acquisition of proper dendrite morphology is a crucial aspect of neuronal development towards the formation of a functional network. The role of the extracellular matrix and its cellular receptors in this process has remained enigmatic. We report that the CD44 adhesion molecule, the main hyaluronan receptor, is localized in dendrites and plays a crucial inhibitory role in dendritic tree arborization in vitro and in vivo. This novel function is exerted by the activation of Src tyrosine kinase, leading to the alteration of Golgi morphology. The mechanism operates during normal brain development, but its inhibition might have a protective influence on dendritic trees under toxic conditions, during which the silencing of CD44 expression prevents dendritic shortening induced by glutamate exposure. Overall, our results indicate a novel role for CD44 as an essential regulator of dendritic arbor complexity in both health and disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.