Indices of connectivity are critical means for moving from qualitative to (semi-)quantitative evaluations of material (e.g., water, sediment and nutrients) transfer across the building blocks of a terrestrial system. In geomorphology, compared to closely related disciplines like ecology and hydrology, the development of indices has only recently started and as such presents opportunities and challenges that merit attention. In this paper, we review existing indices of sediment connectivity and suggest potential avenues of development for meeting current basic and applied research needs. Specifically, we focus on terrestrial geomorphic systems dominated by processes that are driven by hydro-meteorological forcing, neglecting seismically triggered events, karstic systems and environments controlled by eolian processes. We begin by setting a conceptual framework that combines external forcings (drivers) and system (intrinsic) structural and functional properties relevant to sediment connectivity. This framework guides our review of response variables suitable for sediment connectivity indices. In particular, we consider three sample applications concerned with sediment connectivity in: (i) soil studies at the plot scale, (ii) bedload transport at the reach scale, and (iii) sediment budgets at the catchment scale. In relation to the set of response variables identified, we consider data availability and issues of data acquisition for use in indices of sediment connectivity. We classify currently available indices in raster based, object or network based, and indices based on effective catchment area. Virtually all existing indices address the degree of static, structural connectivity only, with limited attention for process-based, functional connectivity counterparts.
Soil erosion is the primary process driving land degradation. Using multiple scales of management to minimize soil erosion is crucial to achieve land degradation neutrality targets within the Sustainable Development Goals agenda. Land management (LM) influences both onsite and off-site erosion on the event-scale and over the long-term. However, each LM differs in effectiveness depending on the temporal scale considered. In order to understand how LM effects internal and external catchment dynamics, we apply LandSoil, a physically based landscape evolution model, to evaluate 7 LM scenarios over long-(30 years) and short-terms (event scale). LM scenarios included changes in land use and/or landscape structure. Under current LM, mean surface soil erosion was ~ 0.69 ± 39•10 -3 m over 30 years. In contrast, a single extreme event (435 mm/24h) in January resulted in ~ 0.62 ± 3•10 -3 m loss and ~ 0.04 ± 2•10 -3 m if it occurred in October. Heterogeneous patterns of erosion and deposition developed after 30 years, whereas extreme events dominantly showed soil loss and high catchment connectivity. Effectiveness of LM in erosion mitigation and sediment trapping differed according to temporal and spatial scales for each scenario. We concluded that multiple temporal and spatial scales must be incorporated in order to adaptively manage land degradation and meet neutrality targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.