Background In unresectable hepatocellular carcinoma several local ablative treatments are available. Among others, radiation based treatments such as stereotactic body radiotherapy (SBRT) and high-dose rate interstitial brachytherapy (HDR BT) have shown good local control rates. Methods We conducted a dose comparison between actually performed HDR BT versus virtually planned SBRT to evaluate the respective clinically relevant radiation exposure to uninvolved liver tissue. Moreover, dose coverage and conformity indices were assessed. Results Overall, 46 treatment sessions (71 lesions, 38 patients) were evaluated. HDR BT was applied in a single fraction with a dose prescription of 1 × 15 Gy. D98 was 17.9 ± 1.3 Gy, D50 was 41.8 ± 8.1 Gy. The SBRT was planned with a prescribed dose of 3 × 12.5 Gy (65%-Isodose), D98 was 50.7 ± 3.1 Gy, D2 was 57.0 ± 2.3 Gy, and D50 was 55.2 ± 2.3 Gy. Regarding liver exposure Vliver10GyBT was compared to Vliver15.9GySBRT, Vliver16.2GySBRT (EQD2 equivalent doses), and Vliver20GySBRT (clinically relevant dose), all results showed significant differences (p < .001). In a case by case analysis Vliver10GyBT was smaller than Vliver20GySBRT in 38/46 cases (83%). Dmean of the liver was significantly smaller in BT compared to SBRT (p < .001). GTV volume was correlated to the liver exposure and showed an advantage of HDR BT over SBRT in comparison of clinically relevant doses, and for EQD2 equivalent doses. The advantage was more pronounced for greater liver lesions The Conformity Index (CI) was significantly better for BT, while Healthy Tissue Conformity Index (HTCI) and Conformation Number (CN) showed an advantage for SBRT (p < .001). Conclusion HDR BT can be advantageous in respect of sparing of normal liver tissue as compared to SBRT, while providing excellent target conformity.
Purpose: To compare treatment plans for interstitial high dose rate (HDR) liver brachytherapy with 192 Ir calculated according to current-standard TG-43U1 protocol with model-based dose calculation following TG-186 protocol. Methods: We retrospectively evaluated dose volume histogram (DVH) parameters for liver, organs at risk (OARs) and clinical target volumes (CTVs) of 20 patient cases diagnosed with hepatocellular carcinoma (HCC) or metastatic colorectal cancer (mCRC). Dose calculations on a homogeneous water geometry (TG-43U1 surrogate) and on a computed tomography (CT) based geometry (TG-186) were performed using Monte Carlo (MC) simulations. The CTs were segmented based on a combination of assigning TG-186 recommended tissues to fixed Hounsfield Unit (HU) ranges and using organ contours delineated by physicians. For the liver, V 5Gy and V 10Gy were analysed, and for OARs the dose to 1 cubic centimeter (D 1cc ). Target coverage was assessed by calculating V 150 , V 100 , V 95 and V 90 as well as D 95 and D 90 . For every DVH parameter, median, minimum and maximum values of the deviations of TG-186 from TG-43U1 were analysed. Results: TG-186-calculated dose was found to be on average lower than dose calculated with TG-43U1. The deviation of highest magnitude for liver parameters was -6.2% of the total liver volume. For OARs, the deviations were all smaller than or equal to -0.5 Gy. Target coverage deviations were as high as -1.5% of the total CTV volume and -3.5% of the prescribed dose. Conclusions: In this study we found that TG-43U1 overestimates dose to liver tissue compared to TG-186. This finding may be of clinical importance for cases where dose to the whole liver is the limiting factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.