Changes in the air permeability and density profiles of 12-mm-thick oriented strand board (OSB) specimens were evaluated in relation to changes in their moisture content. The test methodology consisted of the simulation of real conditions that may occur during construction. Using a water bath, the OSB moisture content was increased from 10% to 17%, and the consequent changes in the air permeability and vertical density profile (VDP) were analyzed. The air permeability and VDP were then reanalyzed after acclimatization of the OSB to a balanced moisture content at 60% relative air humidity and 11.4 °C. After wetting the boards with an initial moisture content of 10% for 2 h and naturally re-drying them in laboratory conditions, an average increase of 11.7% in air permeability was observed. The increase in air permeability was 5.6% with a pressure difference of 50 Pa. After redrying, the boards showed a 1.1% lower average density and 14.5% lower maximum density in the surface layers. From the results, it followed that even the short-term effects of water and the related increase in moisture content of the OSB had a negative impact on the air permeability and VDP.
The study is focused on the decreasing of oriented strand boards air permeability using paints. The oriented strand boards /3 (classification according to EN 300:2006) of 12 mm thickness was chosen for the measurement. Nine different paints were applied in one layer on one side of boards. The difference in air permeability of unpainted and painted boards was defined as paint impact in %. Paint impact ranged from 1,9 % to 78,6 %. Furthermore, the air permeability of 15 and 22 mm thick oriented strand boards /3 boards from another producer exhibiting better properties has been measured to compare. The best results of paint impact were obtained for latex paint (paint impact 78,6 %) and penetration 1 (paint impact 66,4 %). Decreasing of the air permeability of oriented strand boards applied in low-cost constructions by using inexpensive paints could significantly improve the insulating properties of the wall structure and thus contribute to the development of the concept of low-cost passive building.
The study is focused on the decreasing of oriented strand boards air permeability using paints. The oriented strand boards /3 (classification according to EN 300:2006) of 12 mm thickness was chosen for the measurement. Nine different paints were applied in one layer on one side of boards. The difference in air permeability of unpainted and painted boards was defined as paint impact in %. Paint impact ranged from 1,9 % to 78,6 %. Furthermore, the air permeability of 15 and 22 mm thick oriented strand boards /3 boards from another producer exhibiting better properties has been measured to compare. The best results of paint impact were obtained for latex paint (paint impact 78,6 %) and penetration 1 (paint impact 66,4 %). Decreasing of the air permeability of oriented strand boards applied in low-cost constructions by using inexpensive paints could significantly improve the insulating properties of the wall structure and thus contribute to the development of the concept of low-cost passive building.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.