Organic zinc salts and complexes were applied as activators for sulfur vulcanization of styrene–butadiene elastomer (SBR) in order to reduce the content of zinc ions in rubber compounds as compared with conventionally used zinc oxide. In this article, the effects of different organic zinc activators on the curing characteristics, crosslink densities, and mechanical properties of SBR as well as the aging resistance and thermal behavior of vulcanizates are discussed. Organic zinc salts seem to be good substitutes for zinc oxide as activators for sulfur vulcanization of SBR rubber, without detrimental effects to the vulcanization time and temperature. Moreover, vulcanizates containing organic zinc salts exhibit higher tensile strength and better damping properties than vulcanizate crosslinked with zinc oxide. The application of organic zinc activators allows the amount of zinc ions in SBR compounds to be reduced by 70–90 wt % compared to vulcanizate with zinc oxide. This is very important for ecological reasons, since zinc oxide is classified as being toxic to aquatic species.
This work concerns the effect of fillers and ionic liquids on the cure characteristics of natural rubber (NR) compounds, as well as the mechanical and thermal properties of the vulcanizates. Three types of white filler were applied, such as cellulose, nanosized silica and hydrotalcite, to modify the performance of NR composites. Additionally, ionic liquids (ILs) with bromide anion and different cations, i.e., 1-butyl-3-methylimidazolium (Bmi) and 1-butyl-3-methylpyrrolidinium (Bmpyr), were used to improve the cure characteristics of NR compounds and functional properties of the vulcanizates. The type of filler and the structure of ILs were proved to affect the rheometric properties and cure characteristics of NR compounds as well as the performance of the NR vulcanizates. Owing to the adsorption of curatives onto the surface, silica reduced the activity of the crosslinking system, prolonging the optimal vulcanization time of NR compounds and reducing the crosslinking degree of the elastomer. However, silica-filled NR exhibited the highest thermal stability. Hydrotalcite increased the crosslink density and, consequently, the mechanical properties of the vulcanizates, but deteriorated their thermal stability. ILs beneficially influenced the cure characteristics of NR compounds, as well as the crosslink density and mechanical performance of the vulcanizates, particularly those filled with silica. Cellulose did not significantly affect the vulcanization of NR compounds and crosslink density of the vulcanizates compared to the unfilled elastomer, but deteriorated their tensile strength. On the other hand, cellulose improved the thermal stability and did not considerably alter the damping properties of the vulcanizates.
Different thermal analysis techniques were used to study the effect of fillers and ionic liquids (ILs) on the vulcanization process, thermal and dynamic mechanical properties of acrylonitrile-butadiene elastomer (NBR). The products of the studies were composites of NBR filled with hydrotalcite, nanosized silica or carbon black. ILs such as 1-butyl-1-methylpyrrolidinium (BMpyrrolBF 4), 1-butyl-4-methylpyridinium (BMpyrBF 4) or 1-butyl-1-methylpiperidinium (BMpipBF 4) tetrafluoroborates were applied to improve the dispersion degree of the curatives and filler particles in the elastomer and to increase the efficiency of vulcanization. The differential scanning calorimetry results indicated that ILs reduced the vulcanization temperature of NBR compounds and increased the homogeneity of cross-link distribution in the elastomer network. NBRs filled with carbon black or silica exhibited similar thermal stabilities, whereas hydrotalcite reduced the temperature of thermal decomposition. The lowest mechanical loss factors were determined for vulcanizates filled with nanosized silica.
Ionic liquids (ILs) are increasingly used in elastomer technology due to unique physico-chemical properties, which are stable at the temperature of preparation and during processing of rubber compounds. The latest IL application concept is supported ionic liquid-phase (SILP) materials, where an IL film is immobilized on the solid phase. The main aim of this work was studying the influence of IL immobilized on the surface of solid supports, such as silica and carbon black, on the vulcanization process, mechanical properties, and thermal behavior of ethylene–propylene–diene (EPDM) elastomer. Application of the SILP materials enabled the control of EPDM vulcanization without deterioration of the crosslink density, damping properties, thermal stability, and resistance of the vulcanizates to thermo-oxidative aging. Slight improvements in the tensile strength and hardness of the vulcanizates were observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.