Pulsed Dipolar Spectroscopy (PDS) methods of Electron Paramagnetic Resonance (EPR) were used to detect and characterize reversible non-covalent dimers of Human Serum Albumin (HSA), the most abundant protein in human plasma. The spin labels, MTSL and OX063, were attached to Cys-34 and these chemical modifications of Cys-34 did affect the dimerization of HSA, indicating that other post-translational modifications can modulate dimer formation. At physiologically relevant concentrations, HSA does form weak, non-covalent dimers with a well-defined structure. Dimer formation is readily reversible into monomers. Dimerization is very relevant to the role of HSA in the transport, binding, and other physiological processes.
Trityl radicals (TAMs) have recently appeared as an alternative source of spin labels for measuring long distances in biological systems. Finland trityl radical (FTAM) served as the basis for this new generation of spin labels, but FTAM is rather lipophilic and susceptible to self‐aggregation, noncovalent binding with lipophilic sites of proteins, and noncovalent docking at the termini of duplex DNA. In this paper the very hydrophilic OX063 TAM with very low toxicity and little tendency for aggregation is used as the basis for a spin label. Human serum albumin (HSA) labeled with OX063 has an intense narrow line typical of TAM radicals in solution, whereas HSA labeled with FTAM shows broad lines and extensive aggregation. In pulse EPR measurements, the measured phase memory time TM for HSA labeled with OX063 is 6.3 μs at 50 K, the longest yet obtained with a TAM‐based spin label. The lowered lipophilicity also decreases side products in the labeling reaction.
Four albumin-nitroxide conjugates were prepared and tested as metal-free organic radical contrast agents (ORCAs) for magnetic resonance imaging (MRI). Each human serum albumin (HSA) carrier bears multiple nitroxides conjugated via homocysteine thiolactones. These molecular conjugates retain important physical and biological properties of their HSA component, and the resistance of their nitroxide groups to bioreduction was retained or enhanced. The relaxivities are similar for these four conjugates and are much greater than those of their individual components: the HSA or the small nitroxide molecules. This new family of conjugates has excellent prospects for optimization as ORCAs.
Zeolite imidazolate framework-8 (ZIF-8) is a promising platform for drug delivery, and information regarding the stability of ZIF-8 nanoparticles in cell culture media is essential for proper interpretation of in vitro experimental results. In this work, we report a quantitative investigation of the ZIF-8 nanoparticle’s stability in most common cell culture media. To this purpose, ZIF-8 nanoparticles containing sterically shielded nitroxide probes with high resistance to reduction were synthesized and studied using electron paramagnetic resonance (EPR). The degradation of ZIF-8 in cell media was monitored by tracking the cargo leakage. It was shown that nanoparticles degrade at least partially in all studied media, although the degree of cargo leakage varies widely. We found a strong correlation between the amount of escaped cargo and total concentration of amino acids in the environment. We also established the role of individual amino acids in ZIF-8 degradation. Finally, 2-methylimidazole preliminary dissolved in cell culture media partially inhibits the degradation of ZIF-8 nanoparticles. The guidelines for choosing the proper cell culture medium for the in vitro study of ZIF-8 nanoparticles have been formulated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.