Cysteine is considered an essential amino acid in the cultivation of Chinese hamster ovary (CHO) cells. An optimized cysteine supply during fed‐batch cultivation supports the protein production capacity of recombinant CHO cell lines. However, we observed that CHO production cell lines seeded at low cell densities in chemically defined media enriched with cysteine greater than 2.5 mm resulted in markedly reduced cell growth during passaging, hampering seed train performance and scale‐up. To investigate the underlying mechanism, seeding cell densities and initial cysteine concentrations ranging from low to high cysteine concentrations were varied followed by an analysis of cell culture performance. Additionally, cell cycle analysis, intracellular quantification of reactive oxygen species (ROS) as well as transcriptomic analyses by next‐generation sequencing were carried out. Our results demonstrate that CHO cells seeded at low cell densities at high initial cysteine concentrations encountered increased oxidative stress leading to a p21‐mediated cell cycle arrest in the G1/S phase. The resulting oxidative stress caused redox imbalance in the endoplasmic reticulum and activation of the unfolded protein response as well as the major antioxidant nuclear factor‐like 2 response pathways. Potential signature genes related to oxidative stress and the inhibition of the pentose phosphate pathway were identified in the study. Finally, the study presents that seeding cells at a higher concentration counteract oxidative stress in cysteine‐enriched cell culture media.
Genetically modified CHO cell lines are traditionally used for the production of biopharmaceuticals. However, an in-depth molecular understanding of the mechanism and exact position of transgene integration into the genome of pharmaceutical manufacturing cell lines is still scarce. Next-generation sequencing (NGS) holds great promise for strongly facilitating the understanding of CHO cell factories, as it has matured to a powerful and affordable technology for cellular genotype analysis. Targeted Locus Amplification (TLA) combined with NGS allows for robust detection of genomic positions of transgene integration and structural genomic changes occurring upon stable integration of expression vectors. TLA was applied to generate comparative genomic fingerprints of several CHO production cell lines expressing different monoclonal antibodies. Moreover, high producers resulting from an additional round of transfection of an existing cell line (supertransfection) were analyzed to investigate the integrity and the number of integration sites. Our analyses enabled detailed genetic characterization of the integration regions with respect to the number of integrates and structural changes of the host cell's genome.Single integration sites per clone with concatenated transgene copies could be detected and were in some cases found to be associated with genomic rearrangements, deletions or translocations. Supertransfection resulted in an increase in titer associated with an additional integration site per clone. Based on the TLA fingerprints, CHO cell lines originating from the same mother clone could clearly be distinguished.Interestingly, two CHO cell lines originating from the same mother clone were shown to differ genetically and phenotypically despite their identical TLA fingerprints. Taken together, TLA provides an accurate genetic characterization with respect to transgene integration sites compared with conventional methods and represents a valuable tool for a comprehensive evaluation of CHO production clones early in cell line development.
Chinese hamster ovary (CHO) cells are known not to express appreciable levels of the sialic acid residue N-glycolylneuraminic acid (NGNA) on monoclonal antibodies. However, we actually have identified a recombinant CHO cell line expressing an IgG with unusually high levels of NGNA sialylation (>30%). Comprehensive multi-OMICs based experimental analyses unraveled the root cause of this atypical sialylation: (1) expression of the cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) gene was spontaneously switched on, (2) CMAH mRNA showed an anticorrelated expression to the newly discovered Cricetulus griseus (cgr) specific mi-croRNA cgr-miR-111 and exhibits two putative miR-111 binding sites, (3) miR-111 expression depends on the transcription of its host gene SDK1, and (4) a single point mutation within the promoter region of the sidekick cell adhesion molecule 1 (SDK1) gene generated a binding site for the transcriptional repressor histone H4 transcription factor HINF-P. The resulting transcriptional repression of SDK1 led to a downregulation of its co-expressed miR-111 and hence to a spontaneous upregulation of CMAH expression finally increasing NGNA protein sialylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.