Isotope ratios and elemental concentrations were measured in aqueous solutions sampled at varying distances from sources of Fe or Zn ions. The measurements reveal fractionation of isotopes resulting from pure diffusion in solution. Our data demonstrate that diffusion alone can cause changes in (56)Fe/(54)Fe and (66)Zn/(64)Zn isotope ratios in excess of -0.3 per thousand. These findings thus confirm previous suspicions that transport processes contribute to observed variations in isotopic compositions. Diffusion must therefore be considered when attempting to make inferences from isotope measurements on samples originating from aqueous systems where concentration gradients may develop.
Variations in the isotopic composition of Zn present in various biological materials were determined using high-resolution multicollector inductively coupled plasma mass spectrometry (MC-ICPMS), following digestion and purification by anion exchange chromatography. To correct for differences in instrumental mass discrimination effects between samples and standards, Cu was employed as an elemental spike. Complementary analyses of Zn separates by sector field ICPMS instruments revealed that the concentrations of the majority of potentially interfering elements were reduced to negligible levels. Residual spectral interferences resulting from (35)Cl(16)O(2)(+), (40)Ar(14)N(2)(+), and (40)Ar(14)N(16)O(+) could be instrumentally resolved from the (67)Zn, (68)Zn, and (70)Zn ion beams, respectively, during measurement by MC-ICPMS. The only other observed interference in the Cu and Zn mass range that could not be effectively eliminated by high-resolution multicollection resulted from (35)Cl(2)(+), necessitating modification of the sample preparation procedure to allow accurate (70)Zn detection. Complete duplication of the entire analytical procedure for human whole blood and hair, as well as bovine liver and muscle, provided an external reproducibility of 0.05-0.12 per thousand (2sigma) for measured delta(66/64)Zn, delta(67/64)Zn, and delta(68/64)Zn values, demonstrating the utility of the method for the precise isotopic analysis of Zn in biological materials. Relative to the selected Zn isotopic standard, delta(66/64)Zn values for biological samples varied from -0.60 per thousand in human hair to +0.56 per thousand in human whole blood, identifying the former material as the isotopically lightest Zn source found in nature to date.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.