BackgroundMycoheterotrophic plants are considered to associate very specifically with fungi. Mycoheterotrophic orchids are mostly associated with ectomycorrhizal fungi in temperate regions, or with saprobes or parasites in tropical regions. Although most mycoheterotrophic orchids occur in the tropics, few studies have been devoted to them, and the main conclusions about their specificity have hitherto been drawn from their association with ectomycorrhizal fungi in temperate regions.ResultsWe investigated three Asiatic Neottieae species from ectomycorrhizal forests in Thailand. We found that all were associated with ectomycorrhizal fungi, such as Thelephoraceae, Russulaceae and Sebacinales. Based on 13C enrichment of their biomass, they probably received their organic carbon from these fungi, as do mycoheterotrophic Neottieae from temperate regions. Moreover, 13C enrichment suggested that some nearby green orchids received part of their carbon from fungi too. Nevertheless, two of the three orchids presented a unique feature for mycoheterotrophic plants: they were not specifically associated with a narrow clade of fungi. Some orchid individuals were even associated with up to nine different fungi.ConclusionOur results demonstrate that some green and mycoheterotrophic orchids in tropical regions can receive carbon from ectomycorrhizal fungi, and thus from trees. Our results reveal the absence of specificity in two mycoheterotrophic orchid-fungus associations in tropical regions, in contrast to most previous studies of mycoheterotrophic plants, which have been mainly focused on temperate orchids.
The Amazonian savannas of French Guiana are rare and of high ecological and cultural value but are also highly threatened. They are socioecological systems that have been coconstructed by humans and nature and today form mosaic landscapes along the country's coast. From pre-Columbian raised fields through colonial and Cr eole uses to contemporary uses, they have been largely shaped and modified by human activities. They are currently threatened by changes in fire regimes, agricultural practices, invasive species, and infrastructure development. Less than 3% are protected, despite their importance for several endangered animal and plant species. A shift is required in the way we think about their conservation to create a new strategy that would be completely different from existing French environmental protection tools and adapted to the complexity of these landscapes.
The paralogs CUL4A and CUL4B assemble cullin-RING E3 ubiquitin ligase (CRL) complexes regulating multiple chromatin-associated cellular functions. Although they are structurally similar, we found that the unique N-terminal extension of CUL4B is heavily phosphorylated during mitosis, and the phosphorylation pattern is perturbed in the CUL4B-P50L mutation causing X-linked intellectual disability (XLID). Phenotypic characterization and mutational analysis revealed that CUL4B phosphorylation is required for efficient progression through mitosis, controlling spindle positioning and cortical tension. While CUL4B phosphorylation triggers chromatin exclusion, it promotes binding to actin regulators and to two previously unrecognized CUL4B-specific substrate receptors (DCAFs), LIS1 and WDR1. Indeed, co-immunoprecipitation experiments and biochemical analysis revealed that LIS1 and WDR1 interact with DDB1, and their binding is enhanced by the phosphorylated N-terminal domain of CUL4B. Finally, a human forebrain organoid model demonstrated that CUL4B is required to develop stable ventricular structures that correlate with onset of forebrain differentiation. Together, our study uncovers previously unrecognized DCAFs relevant for mitosis and brain development that specifically bind CUL4B, but not the CUL4B-P50L patient mutant, by a phosphorylation-dependent mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.