Ischaemic stroke induces endogenous repair processes that include proliferation and differentiation of neural stem cells and extensive rewiring of the remaining neural connections, yet about 50% of stroke survivors live with severe long-term disability. There is an unmet need for drug therapies to improve recovery by promoting brain plasticity in the subacute to chronic phase after ischaemic stroke. We previously showed that complement-derived peptide C3a regulates neural progenitor cell migration and differentiation in vitro and that C3a receptor signalling stimulates neurogenesis in unchallenged adult mice. To determine the role of C3a-C3a receptor signalling in ischaemia-induced neural plasticity, we subjected C3a receptor-deficient mice, GFAP-C3a transgenic mice expressing biologically active C3a in the central nervous system, and their respective wild-type controls to photothrombotic stroke. We found that C3a overexpression increased, whereas C3a receptor deficiency decreased post-stroke expression of GAP43 (P < 0.01), a marker of axonal sprouting and plasticity, in the peri-infarct cortex. To verify the translational potential of these findings, we used a pharmacological approach. Daily intranasal treatment of wild-type mice with C3a beginning 7 days after stroke induction robustly increased synaptic density (P < 0.01) and expression of GAP43 in peri-infarct cortex (P < 0.05). Importantly, the C3a treatment led to faster and more complete recovery of forepaw motor function (P < 0.05). We conclude that C3a-C3a receptor signalling stimulates post-ischaemic neural plasticity and intranasal treatment with C3a receptor agonists is an attractive approach to improve functional recovery after ischaemic brain injury.
Previous work implicated the complement system in adult neurogenesis as well as elimination of synapses in the developing and injured CNS. In the present study, we used mice lacking the third complement component (C3) to elucidate the role the complement system plays in hippocampus-dependent learning and synaptic function. We found that the constitutive absence of C3 is associated with enhanced place and reversal learning in adult mice. Our findings of lower release probability at CA3-CA1 glutamatergic synapses in combination with unaltered overall efficacy of these synapses in C3 deficient mice implicate C3 as a negative regulator of the number of functional glutamatergic synapses in the hippocampus. The C3 deficient mice showed no signs of spontaneous epileptiform activity in the hippocampus. We conclude that C3 plays a role in the regulation of the number and function of glutamatergic synapses in the hippocampus and exerts negative effects on hippocampus-dependent cognitive performance.
SignificanceAberrant insulin-like growth factor 1 receptor (IGF1R)/insulin receptor signaling in brain has recently been linked to neurodegeneration in diabetes mellitus and in Alzheimer’s disease. In this study, we demonstrate that functional disability and pain in patients with rheumatoid arthritis (RA) and in experimental RA are associated with hippocampal inflammation and inhibition of IGF1R/insulin receptor substrate 1 (IRS1) signal, reproducing an IGF1/insulin-resistant state. This restricts formation of new neurons in the hippocampus, reduces hippocampal volume, and predisposes RA patients to develop neurological symptoms. Improving IRS1 function through down-regulation of IGF1R disinhibits neurogenesis and can potentially ameliorate neurological symptoms. This opens perspectives for drugs that revert IGF1/insulin resistance as an essential complement to the antirheumatic and antiinflammatory arsenal.
Pekna, M. (2017). Intranasal C3a treatment ameliorates cognitive impairment in a mouse model of neonatal hypoxic-ischemic brain injury. Experimental Neurology. DOI: 10.1016DOI: 10. /j.expneurol.2017 Citing this paper Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections. General rightsCopyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.•You may not further distribute the material or use it for any profit-making activity or commercial gain •You may freely distribute the URL identifying the publication in the Research Portal Take down policy If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to the work immediately and investigate your claim. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT
Background and Purpose: Inflammation seems to be a key player in the pathophysiology of stroke. In this study, we compared plasma C3 and C3a levels in cryptogenic and large-vessel disease (LVD) subtypes of ischemic stroke and control subjects and evaluated their association to outcome at 3 months and 2 years. Methods: C3 and C3a levels in plasma of 79 cryptogenic stroke and 73 LVD stroke patients, sampled within 10 days and at 3 months after stroke, and age- and sex-matched control subjects from the Sahlgrenska Academy Study on Ischemic Stroke were measured by ELISA. Functional outcome was assessed with the modified Rankin Scale. Results: Plasma C3 was increased in both stroke groups at both time points. Systemic elevation of C3a was limited to the acute phase in the cryptogenic stroke group, whereas plasma C3a levels in the LVD group were also elevated at the 3-month follow-up. In the LVD group, plasma C3 levels in the upper third at the 3-month follow-up were associated with an unfavorable outcome after 3 months independently of age and sex: odds ratio (OR) 5.56; 95% confidence interval (CI) 1.03–29.93; p = 0.045; as well as after 2 years: OR 4.75; 95% CI 1.11–20.30; p = 0.036. In the cryptogenic stroke group, high plasma C3a levels in the acute phase were associated with an unfavorable outcome after 3 months: OR 3.75; 95% CI 1.01–13.96; p = 0.049 in univariate analysis but not after adjustment for age and sex (p = 0.050). Conclusions: Plasma C3 and C3a levels are elevated in cryptogenic and LVD stroke and the predictive value of these markers may depend on stroke subtype. Further studies on the role of the complement system in ischemic stroke outcome based on larger patient populations and controlling for the effect of infections, are clearly warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.