Understanding of the electrochemical properties of graphene, especially the electron transfer kinetics of a redox reaction between the graphene surface and a molecule, in comparison to graphite or other carbon-based materials, is essential for its potential in energy conversion and storage to be realized. Here we use voltammetric determination of the electron transfer rate for three redox mediators, ferricyanide, hexaammineruthenium, and hexachloroiridate (Fe(CN)(6)(3-), Ru(NH3)(6)(3+), and IrCl(6)(2-), respectively), to measure the reactivity of graphene samples prepared by mechanical exfoliation of natural graphite. Electron transfer rates are measured for varied number of graphene layers (1 to ca. 1000 layers) using microscopic droplets. The basal planes of mono- and multilayer graphene, supported on an insulating Si/SiO(2) substrate, exhibit significant electron transfer activity and changes in kinetics are observed for all three mediators. No significant trend in kinetics with flake thickness is discernible for each mediator; however, a large variation in kinetics is observed across the basal plane of the same flakes, indicating that local surface conditions affect the electrochemical performance. This is confirmed by in situ graphite exfoliation, which reveals significant deterioration of initially, near-reversible kinetics for Ru(NH3)(6)(3+) when comparing the atmosphere-aged and freshly exfoliated graphite surfaces.
Results of a study on the electrochemical properties of exfoliated single and multilayer graphene flakes are presented. Graphene flakes were deposited on silicon/silicon oxide wafers to enable fast and accurate characterization by optical microscopy and Raman spectroscopy. Conductive silver paint and silver wires were used to fabricate contacts; epoxy resin was employed as a masking coating in order to expose a stable, well-defined area of graphene. Both multilayer and monolayer graphene microelectrodes showed quasi-reversible behavior during voltammetric measurements in potassium ferricyanide. However, the standard heterogeneous charge transfer rate constant, k°, was estimated to be higher for monolayer graphene flakes.
The effect of water additions, from
0to50vol%
, to an ammonium fluoride/ethylene glycol electrolyte on the composition and morphology of titania-based nanotubes was investigated by scanning and transmission electron microscopy, Rutherford backscattering spectroscopy, and nuclear reaction analysis. Further to the presence of units of
TinormalO2
, the films contained fluorine, carbon, nitrogen, and probably hydrogen species derived from the electrolyte. The compositions of the films appeared to be relatively independent of the water content of the electrolyte. Following a small increase in efficiency of film growth for additions between 0 and
1vol%
water, the efficiency decreased from about 25 to about 10% between water contents of 1 and
25vol%
, respectively, possibly due to a combination of loss of titanium species to the electrolyte and evolution of oxygen. The densities of the nanotube layers were estimated to be in the range of
1.25–1.75gcm−3
, with an average value of
1.47gcm−3
.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.