Learning theory, attentional processes, social influences, and biological determinants contribute to the development, persistence, and modification of expectancies. Psychological interventions should focus on optimizing expectation violation to achieve optimal treatment outcome and to avoid treatment failures.
In four human learning experiments, we examined the extent to which learned predictiveness depends upon direct comparison between relatively good and poor predictors. Participants initially solved (1) linear compound discriminations in which one or both of the stimuli in each compound were predictive of the correct outcome, (2) biconditional discriminations where only the configurations of the stimuli were predictive of the correct outcome, or (3) pseudo-discriminations in which no stimulus features were predictive. In each experiment, subsequent learning and test stages were used to assay changes in the associability of each stimulus brought about by its role in the initial discriminations. Although learned predictiveness effects were observed in all experiments (i.e. previously predictive cues were more readily associated with a new outcome than previously non-predictive cues), the same changes in associability were observed regardless of whether the stimulus was initially learned about in the presence of an equally predictive, more predictive, or less predictive stimulus. The results suggest that learned associability is not controlled by competitive allocation of attention, but rather by the absolute predictiveness of each individual cue.
In individuals with chronic pain harmless bodily sensations can elicit anticipatory fear of pain resulting in maladaptive responses such as taking pain medication. Here, we aim to broaden the perspective taking into account recent evidence that suggests that interoceptive perception is largely a construction of beliefs, which are based on past experience and that are kept in check by the actual state of the body. Taking a Bayesian perspective, we propose that individuals with chronic pain display a heightened prediction of pain [prior probability p(pain)], which results in heightened pain perception [posterior probability p(pain|sensation)] due to an assumed link between pain and a harmless bodily sensation [p(sensation|pain)]. This pain perception emerges because their mind infers pain as the most likely cause for the sensation. When confronted with a mismatch between predicted pain and a (harmless bodily) sensation, individuals with chronic pain try to minimize the mismatch most likely by active inference of pain or alternatively by an attentional shift away from the sensation. The active inference results in activities that produce a stronger sensation that will match with the prediction, allowing subsequent perceptual inference of pain. Here, we depict heightened pain perception in individuals with chronic pain by reformulating and extending the assumptions of the interoceptive predictive coding model from a Bayesian perspective. The review concludes with a research agenda and clinical considerations.
Harris and Livesey. Learning & Behavior, 38, 1-26, (2010) described an elemental model of associative learning that implements a simple learning rule that produces results equivalent to those proposed by Rescorla and Wagner (1972), and additionally modifies in "real time" the strength of the associative connections between elements. The novel feature of this model is that stimulus elements interact by suppressively normalizing one another's activation. Because of the normalization process, element activity is a nonlinear function of sensory input strength, and the shape of the function changes depending on the number and saliences of all stimuli that are present. The model can solve a range of complex discriminations and account for related empirical findings that have been taken as evidence for configural learning processes. Here we evaluate the model's performance against the host of conditioning phenomena that are outlined in the companion article, and we present a freely available computer program for use by other researchers to simulate the model's behavior in a variety of conditioning paradigms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.