The unexpected repurposing of nuclear transport proteins from their function in interphase to an equally vital and very different set of functions in mitosis was very surprising. The multi-talented cast when first revealed included the import receptors, importin alpha and beta, the small regulatory GTPase RanGTP, and a subset of nuclear pore proteins. In this review, we report that recent years have revealed new discoveries in each area of this expanding story in vertebrates: (a) The cast of nuclear transport receptors playing a role in mitotic spindle regulation has expanded: both transportin, a nuclear import receptor, and Crm1/Xpo1, an export receptor, are involved in different aspects of spindle assembly. Importin beta and transportin also regulate nuclear envelope and pore assembly. (b) The role of nucleoporins has grown to include recruiting the key microtubule nucleator the γ-TuRC complex and the exportin Crm1 to the mitotic kinetochores of humans. Together they nucleate microtubule formation from the kinetochores towards the centrosomes. (c) New research finds that the original importin beta/RanGTP team have been further co-opted by evolution to help regulate other cellular and organismal activities, ranging from the actual positioning of the spindle within the cell perimeter, to regulation of a newly discovered spindle microtubule branching activity, to regulation of the interaction of microtubule structures with specific actin structures. (d) Lastly, because of the multitudinous roles of karyopherins throughout the cell cycle, a recent large push toward testing their potential as chemotherapeutic targets has begun to yield burgeoning progress in the clinic.
MBF and SBF transcription factors regulate a large family of coordinately expressed G1/S genes required for early cell-cycle functions including DNA replication and repair. SBF is inactivated upon S-phase entry by Clb/CDK whereas MBF targets are repressed by the co-repressor, Nrm1. Using genome-wide expression analysis of cells treated with methyl methane sulfonate (MMS), hydroxyurea (HU) or camptothecin (CPT), we show that genotoxic stress during S phase specifically induces MBF-regulated genes. This occurs via direct phosphorylation of Nrm1 by Rad53, the effector checkpoint kinase, which prevents its binding to MBF target promoters. We conclude that MBF-regulated genes are distinguished from SBF-regulated genes by their sensitivity to activation by the S-phase checkpoint, thereby, providing an effective mechanism for enhancing DNA replication and repair and promoting genome stability.
The DNA damage checkpoint regulates DNA replication and arrests cell cycle progression in response to genotoxic stress. In Saccharomyces cerevisiae, the protein kinase Rad53 plays a central role in preventing genomic instability and maintaining viability in the presence of replication stress and DNA damage. Activation of Rad53 depends on phosphorylation by the upstream kinase Mec1, followed by autophosphorylation on multiple residues. Also critical for cell viability, the molecular mechanism of Rad53 deactivation remains incompletely understood. Rad53 dephosphorylation after repair of a persistent double strand break in G 2 /M has been shown to depend on the presence of the PP2C-type phosphatases Ptc2 and Ptc3. More recently, the PP2A-like protein phosphatase Pph3 has been shown to be required to dephosphorylate Rad53 after DNA methylation damage in S phase. However, we show here that Ptc2/3 are dispensable for Rad53 deactivation after replication stress or DNA methylation damage. Pph3 is also dispensable for the deactivation of Rad53 after replication stress. In addition, Rad53 kinase activity is still deactivated in pph3 null cells after DNA methylation damage, despite persistent Rad53 hyperphosphorylation. Finally, a strain in which the three phosphatases are deleted shows a severe defect in Rad53 kinase deactivation after DNA methylation damage but not after replication stress. In all, our results suggest that distinct phosphatases operate to return Rad53 to its basal state after different genotoxic stresses and that a yet unidentified phosphatase may be responsible for the deactivation of Rad53 after replication stress.
bIn Saccharomyces cerevisiae, G 1 /S transcription factors MBF and SBF regulate a large family of genes important for entry to the cell cycle and DNA replication and repair. Their regulation is crucial for cell viability, and it is conserved throughout evolution. MBF and SBF consist of a common component, Swi6, and a DNA-specific binding protein, Mbp1 and Swi4, respectively. Transcriptional repressors bind to and regulate the activity of both transcription factors. Whi5 binds to SBF and represses its activity at the beginning of the G 1 phase to prevent early activation. Nrm1 binds to MBF to repress transcription as cells progress through S phase. Here, we describe a protein motif, the GTB motif (for G 1 /S transcription factor binding), in Nrm1 and Whi5 that is required to bind to the transcription factors. We also identify a region of the carboxy terminus of Swi6 that is required for Nrm1 and Whi5 binding to their target transcription factors and show that mutation of this region overrides the repression of MBF-and SBF-regulated genes by Nrm1 and Whi5. Finally, we show that the GTB motif is the core of a functional module that is necessary and sufficient for targeting of the transcription factors by their cognate repressors.
Nuclear pore complexes (NPCs) form the gateway to the nucleus, mediating virtually all nucleocytoplasmic trafficking. Assembly of a nuclear pore complex requires the organization of many soluble sub-complexes into a final massive structure embedded in the nuclear envelope. By use of a LacI/LacO reporter system, we were able to assess nucleoporin (Nup) interactions, show that they occur with a high level of specificity, and identify nucleoporins sufficient for initiation of the complex process of NPC assembly in vivo. Eleven nucleoporins from different sub-complexes were fused to LacI-CFP and transfected separately into a human cell line containing a stably integrated LacO DNA array. The LacI-Nup fusion proteins, which bound to the array, were examined for their ability to recruit endogenous nucleoporins to the intranuclear LacO site. Many could recruit nucleoporins of the same sub-complex and a number could also recruit other sub-complexes. Strikingly, Nup133 and Nup107 of the Nup107/160 subcomplex and Nup153 and Nup50 of the nuclear pore basket recruited a near full complement of nucleoporins to the LacO array. Furthermore, Nup133 and Nup153 efficiently targeted the LacO array to the nuclear periphery. Our data support a hierarchical, seeded assembly pathway and identify Nup133 and Nup153 as effective "seeds" for NPC assembly. In addition, we show that this system can be applied to functional studies of individual nucleoporin domains as well as to specific nucleoporin disease mutations. We find that the R391H cardiac arrhythmia/sudden death mutation of Nup155 prevents both its subcomplex assembly and nuclear rim targeting of the LacO array.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.