Cerament may guide bone generation from an intact cortical bone surface. Although bone remodeling speed may differ between rats and humans, our study indicates that Cerament may become a useful alternative to autologous bone, both to fill defects and to increase bone volume by cortical augmentation.
The aim of this systematic review is to present an up-to-date review of available publications investigating the cellular mechanisms initiating the development of medication-related osteonecrosis of the jaw caused by zoledronic acid. Electronic searches of MEDLINE/PubMed and Scopus were conducted on the 3 June, 2019. A total of 804 publications were identified, of which 11 met the inclusion criteria and were, therefore, included in this study. All the included studies were in vitro studies investigating various human cells. The current review found that zoledronic acid in various concentrations increased apoptosis and decreased migration and proliferation of epithelial cells, fibroblasts, osteoblasts, endothelial cells and dental pulp stem cells, which can affect local tissue homeostasis. The consequences of zoledronic acid were found to be both time- and dose-dependent. The pathophysiology of medication-related osteonecrosis of the jaw is likely a multifactorial process involving prolonged wound healing, chronic inflammation and altered bone remodelling following the administration of zoledronic acid. Further research is needed to identify the exact pathophysiology to optimise management and treatment.
The cost for a sinus augmentation with iliac surgery exceeds that of a policlinic procedure manifold. Provided that a policlinic operation with local bone, with or without bone substitute, renders an adequate end result, the economic gain would be substantial and post-operative morbidity would be greatly reduced.
The purpose was to investigate whether a new biphasic and injectable ceramic bone substitute Cerament™ that rapidly remodels to bone, may contribute to the retention of titanium implant screws during the healing period, and to analyze the pattern of bone formation around titanium implants.Titanium screws were implanted in rat tibiae and embedded with or without Cerament™ on the cortical surface. Torsional resistance was measured after 1 day, and after 6 and 12 weeks. Implant areas without bone substitute were analyzed histologically for comparison. The torsional resistance increased over time as the screws were osseointegrated. There was no difference in resistance between screws embedded in the bone substitute and control screws. The bone apposition was more pronounced on the proximal side of the screw than on the distal side. Cerament™ is capable of conducting bone growth from a cortical bone surface. The newly formed bone in this application does not significantly add to the osseointegrative strength of the implant screw, as measured by torque resistance, during the first 12 weeks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.