The surface air warming over the Arctic has been almost twice as much as the global average in recent decades. In this region, unprecedented amounts of smoldering peat fires have been identified as a major emission source of climate-warming agents. While much is known about greenhouse gas emissions from these fires, there is a knowledge gap on the nature of particulate emissions and their potential role in atmospheric warming. Here, we show that aerosols emitted from burning of Alaskan and Siberian peatlands are predominantly brown carbon (BrC) -a class of visible lightabsorbing organic carbon (OC) -with a negligible amount of black carbon content. The mean fuel-based emission factors for OC aerosols ranged from 3.8 to 16.6 g kg −1 . Their mass absorption efficiencies were in the range of 0.2-0.8 m 2 g −1 at 405 nm (violet) and dropped sharply to 0.03-0.07 m 2 g −1 at 532 nm (green), characterized by a mean Ångström exponent of ≈ 9. Electron microscopy images of the particles revealed their morphologies to be either single sphere or agglomerated "tar balls". The shortwave top-of-atmosphere aerosol radiative forcing per unit optical depth under clear-sky conditions was estimated as a function of surface albedo. Only over bright surfaces with albedo greater than 0.6, such as snow cover and low-level clouds, the emitted aerosols could result in a net warming (positive forcing) of the atmosphere.Published by Copernicus Publications on behalf of the European Geosciences Union.
The effect of wildfires on the soils of the south taiga and forest‐steppe environments of Central Russia (Histic Spodosols and Eutric Fluvic Arenosols) was investigated in terms of the content and quality of humic acids (HAs) using instrumental spectroscopic methods (solid‐state carbon‐13 nuclear magnetic resonance and electron spin resonance). The bulk elemental composition of HAs was not essentially altered in postfire soils; however, the organic matter of fire‐affected superficial soil layers was characterized by changes in the structural composition and biochemical activity levels. Solid‐state carbon‐13 nuclear magnetic resonance spectroscopy showed that there is an intensive increase in aromatic compounds in HA molecules in soil from both the south taiga and forest‐steppe environments. There is a pronounced and statistically significant decline of aliphatic chain content in response to exposure to fire. The free radicals content and the degree of molecular stabilization assessed with electron spin resonance showed an essential alteration of the HAs, expressed in the increase in the radical's portion, in postfire soils compared with that found in soils not exposed to fire. It was also shown that the accumulation of aromatic compounds indicates only apparent stabilization of HAs due to the loss of periphery alkylic carbon species, which was confirmed by destabilization of the molecules as illustrated by the increase of free radicals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.