Background During the ongoing coronavirus disease COVID-19 pandemic, many individuals were infected with and have cleared the virus, developing virus-specific antibodies and effector/memory T cells. An important unanswered question is what levels of T cell and antibody responses are sufficient to protect from the infection. Methods In 5340 Moscow residents, we evaluated anti-SARS-CoV-2 IgM/IgG titers and frequencies of the T cells specific to the membrane, nucleocapsid, and spike proteins of SARS-CoV-2, using IFNγ ELISpot assay. Additionally, we evaluated the fractions of virus-specific CD4+ and CD8+ T cells using intracellular staining of IFNγ and IL2 followed by flow cytometry. We analyzed the COVID-19 rates as a function of the assessed antibody and T cell responses, using the Kaplan-Meyer estimator method, for up to 300 days post-inclusion. Results We showed that T cell and antibody responses are closely interconnected and are commonly induced concurrently. Magnitudes of both responses inversely correlated with infection probability. Individuals positive for both responses demonstrated the highest levels of protectivity against the SARS-CoV-2 infection. A comparable level of protection was found in individuals with antibody response only, while the T cell response by itself granted only intermediate protection. Conclusions We found that the contribution of the virus-specific antibodies to protection against the SARS-CoV-2 infection is more pronounced than that of the T cells. The data on the virus-specific IgG titers may be instructive for making decisions in personalized health care and public anti-COVID-19 policies.
End-binding (EB) proteins associate with the growing tips of microtubules (MTs)and modulate their dynamics directly and indirectly, by recruiting essential factors to fine-tune MTs for their many essential roles in cells. Previously EB proteins have been shown to recognize a stabilizing GTP/GDP-Pi cap at the tip of growing MTs, but information about additional EB-binding zones on MTs has been limited. In this work, we studied fluorescence intensity profiles of one of the three mammalian EB-proteins, EB3, fused with red fluorescent protein (RFP). The distribution of EB3 on MTs in mouse fibroblasts frequently deviated from single exponential decay and exhibited secondary peaks. Those secondary peaks, which we refer to as EB3-islands, were detected on 56% comets of growing MTs and were encountered once per 44 s of EB3-RFP comet growth time with about 5 s half-lifetime. The majority of EB3-islands in the vicinity of MT tips was stationary and originated from EB3 comets moving with the growing MT tips. Computational modeling of the decoration of dynamic MT tips by EB3 suggested that the EB3-islands could not be explained simply by a stochastic first-order GTP hydrolysis/phosphate release. We speculate that additional protein factors contribute to EB3 residence time on MTs in cells, likely affecting MT dynamics.
BackgroundCoronavirus disease COVID-19 has spread worldwide extremely rapidly. Although many individuals have been infected and have cleared the virus, developing virus-specific antibodies and effector/memory T cells, an important question still to be answered is what levels of T cell and antibody responses are sufficient to protect from the infection.MethodsIn 5,340 Moscow residents, we evaluated the anti-SARS-CoV-2 IgM/IgG titers and the frequencies of the T cells specific to the nucleocapsid, membrane, and spike proteins of SARS-CoV-2, using IFNγ ELISpot, and we also evaluated the fractions of virus-specific CD4+ and CD8+ T cells using intracellular staining of IFNγ and IL2 followed by flow cytometry. Furthermore, we analyzed the post-inclusion COVID-19 rates as a function of the assessed antibody and T cell responses using the Kaplan-Meyer estimator method.ResultsWe showed that T cell and antibody responses are closely interconnected and commonly are induced concurrently. Individuals positive for both antibody and T cell immunities demonstrated the highest levels of protectivity against the SARS-CoV-2 infection, indistinguishably from individuals with antibody response only. Meanwhile, individuals with T cell response only demonstrated slightly higher protectivity than individuals without both types of immunity, as measured from N-protein–specific or CD4+IL2+ T cells. However, these individuals were characterized by higher IgG titers than individuals without any immunity, although the titers were below the seropositivity cut-off.ConclusionsThe results of the study indicated the advantage of serology testing over the analysis of T cell responses for the prediction of SARS-CoV-2 infection rates on a populational level.
Microtubule (MT) inhibitors show anti-cancer activity in a wide range of tumors in vitro and demonstrate high clinical efficacy. To date they are routinely included into many chemotherapeutic regimens. While the mechanisms of MT inhibitors’ interactions with tubulin have been well-established, the relationship between their concentration and effect on neoplastic cells is not completely understood. The common notion is that tumor cells are most vulnerable during division and all MT inhibitors block them in mitosis and induce mitotic checkpoint-associated cell death. At the same time multiple evidence of more subtle effects of lower doses of MT inhibitors on cell physiology exist. The extent of efficacy of the low-dose MT inhibitor treatment and the mechanisms of resulting cell death currently present a critical issue in oncology. The prospect of MT inhibitor dose reduction is promising as protocols at higher concentration have multiple side effects. We assessed cell cycle changes and cell death induced by MT inhibitors (paclitaxel, nocodazole, and vinorelbine) on human lymphoid B-cell lines in a broad concentration range. All inhibitors had similar accumulation effects and demonstrated “trigger” concentrations that induce cell accumulation in G2/M phase. Concentrations slightly below the “trigger” promoted cell accumulation in sub-G1 phase. Multi-label analysis of live cells showed that the sub-G1 population is heterogeneous and may include cells that are still viable after 24 h of treatment. Effects observed were similar for cells expressing Tat-protein. Thus cell cycle progression and cell death are differentially affected by high and low MT inhibitor concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.