Human 4-hydroxyphenylpyruvate dioxygenase-like (HPDL) is a putative iron-containing non-heme oxygenase of unknown specificity and biological significance. We report 25 families containing 34 individuals with neurological disease associated with biallelic HPDL variants. Phenotypes ranged from juvenile-onset pure hereditary spastic paraplegia to infantile-onset spasticity and global developmental delays, sometimes complicated by episodes of neurological and respiratory decompensation. Variants included bona fide pathogenic truncating changes, although most were missense substitutions. Functionality of variants could not be determined directly as the enzymatic specificity of HPDL is unknown; however, when HPDL missense substitutions were introduced into 4-hydroxyphenylpyruvate dioxygenase (HPPD, an HPDL orthologue), they impaired the ability of HPPD to convert 4-hydroxyphenylpyruvate into homogentisate. Moreover, three additional sets of experiments provided evidence for a role of HPDL in the nervous system and further supported its link to neurological disease: (i) HPDL was expressed in the nervous system and expression increased during neural differentiation; (ii) knockdown of zebrafish hpdl led to abnormal motor behaviour, replicating aspects of the human disease; and (iii) HPDL localized to mitochondria, consistent with mitochondrial disease that is often associated with neurological manifestations. Our findings suggest that biallelic HPDL variants cause a syndrome varying from juvenile-onset pure hereditary spastic paraplegia to infantile-onset spastic tetraplegia associated with global developmental delays.
Our results provide strong evidence that STRC gene mutations are an important cause of NSHL-AR in Czech HL patients and are probably the second most common cause of DFNB. Large CNVs were more frequent than point mutations and it is reasonable to test them first by a QF-PCR method-a simple, accessible, and efficient tool for STRC CNV detection, which can be combined by MLPA.
Non-syndromic autosomal recessive hearing loss is an extremely heterogeneous disease caused by mutations in more than 80 genes. We examined Czech patients with early/prelingual non-syndromic, presumably genetic hearing loss (NSHL) without known cause after GJB2 gene testing. Four hundred and twenty-one unrelated patients were examined for STRC gene deletions with quantitative comparative fluorescent PCR (QCF PCR), 197 unrelated patients with next-generation sequencing by custom-designed NSHL gene panels and 19 patients with whole-exome sequencing (WES). Combining all methods, we discovered the cause of the disease in 54 patients. The most frequent type of NSHL was DFNB16 (STRC), which was detected in 22 patients, almost half of the clarified patients. Other biallelic pathogenic mutations were detected in the genes: MYO15A, LOXHD1, TMPRSS3 (each gene was responsible for five clarified patients, CDH23 (four clarified patients), OTOG and OTOF (each gene was responsible for two clarified patients). Other genes (AIFM1, CABP2, DIAPH1, PTPRQ, RDX, SLC26A4, TBC1D24, TECTA, TMC1) that explained the cause of hearing impairment were further detected in only one patient for each gene. STRC gene mutations, mainly deletions remain the most frequent NSHL cause after mutations in the GJB2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.