Aim To examine and visualize clines in size and shape of Cercopithecus aethiops Linneus, 1758 (Primate, Cercopithecidae) skulls, and to investigate environmental factors which might best explain the observed variation. Location Sub-Saharan Africa. Methods Eighty-six three-dimensional anatomical landmarks were used to describe 306 skulls of adult C. aethiops sampled over its entire distribution. Geometric morphometric methods for the quantitative analysis of form variation were applied. Size and shape variables were computed and regressed onto geographical coordinates and environmental variables (elevation, temperature, rainfall, moisture and Shannon rainfall diversity index) using both linear and curvilinear models. Components (geographical, environmental, spatially structured environmental and residual) of ecogeographical variation in skull form were partitioned using partial regression. A novel approach for summarizing and visualizing nonlinear patterns of clinal variation using surface rendering of three-dimensional shapes is presented. Results Clinal variation in size and shape was highly significant, and was best described by curvilinear models. There were strong similarities between females and males. The cline in size was especially pronounced, explaining up to about 40% of observed variation, and was mainly longitudinal rather than latitudinal. A major trend of clinal shape variation also occurred from west to east, and corresponded to an expansion of the face relative to the neurocranium in the west. In the east, skulls also tended to be deeper and with narrower zygomatic arches. Geography and the spatially structured environmental component were the major contributors to the explained variance in size in both sexes, but the proportion of variance explained by the latter was smaller in females. In contrast, geography and environment explained similar amounts of variation in shape and their contribution was about twice that of the spatially structured environmental component. About 60-80% of variation in skull form was not explained by any variable in the analysis. The main factors influencing skull size differed in females and males, with rainfall being very influential in males. Both female and male skull shapes were strongly affected by average annual rainfall. Main conclusions A strong spatial and environmental basis to variations in African vervet monkey skull form was evident. However, the observed pattern did not conform to predictions based on Bergmann's rule. Rainfall consistently emerged as an important predictor, which may contribute to intraspecific variation in the size and shape of vervet monkey skulls through its effect on habitat productivity
Nearly all primates are ecologically dependent on trees, but they are nonetheless found in an enormous range of habitats, from highly xeric environments to dense rainforest. Most primates have a relatively ‘generalised’ skeleton, enabling locomotor flexibility and facilitating other crucial functions, such as manual foraging and grooming. This paper explores the associations between habitat, locomotion and morphology in the forelimbs of cercopithecids (Old World monkeys), contextualising their skeletal ecomorphological patterns with those of other mammals, and complementing functional morphological analyses with phylogenetic comparative techniques. The ecomorphological signals present in the generalised primate postcranium, and how an ancestral arboreal ‘bauplan’ might be modified to incorporate terrestriality or exploit distinct arboreal substrates, are investigated. Analysis of ecomorphological variation in guenons indicates that terrestrial Chlorocebus species retain core elements of a general guenon form, with modifications for terrestriality that vary by species. Adaptation to different modes of arboreality has also occurred in Cercopithecus. The considerable morphological similarity in the guenons sampled emphasises the importance of generality in the primate postcranium – much forelimb variation appears to have emerged stochastically, with a smaller number of traits having a strong functional signal. Analysis of a broader sample of cercopithecids and comparison with felids, suids and bovids indicates that although the cercopithecid humerus has functional morphological signals that enable specimens to be assigned with a reasonable degree of certainty to habitat groups, there is considerable overlap in the specimens assigned to each habitat group. This probably reflects ecological dependence on trees, even in predominantly terrestrial species, as well as the multiple functions of the forelimb and, in some cases, wide geographic distributions that promote intraspecific variation. The use of phylogenetic correction reduced the discriminatory power of the models, indicating that, like allometry, phylogeny contains important ecomorphological information, and should not necessarily be factored out of analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.