Signal transduction, regulatory processes, and pharmaceutical responses are highly dependent upon ligand residence times. Gaining insight into how physical factors influence residence times, or koff, should enhance our ability to manipulate biological interactions. We report experiments that yield structural insight into koff for a series of eight 2,4-diaminopyrimidine inhibitors of dihydrofolate reductase that vary by six orders of magnitude in binding affinity. NMR relaxation dispersion experiments revealed a common set of residues near the binding site that undergo a concerted, millisecond-timescale switching event to a previously unidentified conformation. The rate of switching from ground to excited conformations correlates exponentially with Ki and koff, suggesting that protein dynamics serves as a mechanical initiator of ligand dissociation within this series and potentially for other macromolecule-ligand systems. Although kconf,forward is faster than koff, use of the ligand series allowed for connections to be drawn between kinetic events on different timescales.
The phenomenon of antibiotic resistance has created a need for the development of novel antibiotic classes with nonclassical cellular targets. Unfortunately, target-based drug discovery against proteins considered essential for in vitro bacterial viability has yielded few new therapeutic classes of antibiotics. Targeting the large proportion of genes considered nonessential that have yet to be explored by high-throughput screening, for example, RecA, can complement these efforts. Recent evidence suggests that RecA-controlled processes are responsible for tolerance to antibiotic chemotherapy and are involved in pathways that ultimately lead to full-fledged antibiotic resistance. Therefore inhibitors of RecA may serve as therapeutic adjuvants in combination chemotherapy of bacterial infectious diseases. Toward the goal of validating RecA as a novel target in the chemotherapy of bacterial infections, the authors have screened 35,780 small molecules against RecA. In total, 80 small molecules were identified as primary hits and could be clustered in 6 distinct chemotype clades. The most potent class of hits was further examined, and 1 member compound was found to inhibit RecA-mediated strand exchange and prevent ciprofloxacin-induced SOS expression in Escherichia coli. This compound represents the first small molecule demonstrating an ability to inhibit the bacterial SOS response in live bacterial cell cultures.
[Reaction: see text]. Readily available N-acylbenzotriazoles 2a-l (derived from a variety of aliphatic, (hetero)aromatic, and N-protected alpha-amino carboxylic acids) smoothly convert primary 3a-c and alpha-functionalized primary nitroalkanes 3d into the corresponding alpha-nitro ketones 5a-p in yields of 39-86% (average 63%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.