There is much interest in developing synthetic analogues of biological membrane channels with high efficiency and exquisite selectivity for transporting ions and molecules. Bottom-up and top-down methods can produce nanopores of a size comparable to that of endogenous protein channels, but replicating their affinity and transport properties remains challenging. In principle, carbon nanotubes (CNTs) should be an ideal membrane channel platform: they exhibit excellent transport properties and their narrow hydrophobic inner pores mimic structural motifs typical of biological channels. Moreover, simulations predict that CNTs with a length comparable to the thickness of a lipid bilayer membrane can self-insert into the membrane. Functionalized CNTs have indeed been found to penetrate lipid membranes and cell walls, and short tubes have been forced into membranes to create sensors, yet membrane transport applications of short CNTs remain underexplored. Here we show that short CNTs spontaneously insert into lipid bilayers and live cell membranes to form channels that exhibit a unitary conductance of 70-100 picosiemens under physiological conditions. Despite their structural simplicity, these 'CNT porins' transport water, protons, small ions and DNA, stochastically switch between metastable conductance substates, and display characteristic macromolecule-induced ionic current blockades. We also show that local channel and membrane charges can control the conductance and ion selectivity of the CNT porins, thereby establishing these nanopores as a promising biomimetic platform for developing cell interfaces, studying transport in biological channels, and creating stochastic sensors.
Biological membrane fission is conducted by protein-driven stress. To create such membrane stress the GTPase dynamin-1, protein orchestrating membrane fission in endocytosis, assembles into helical scaffolds that constrict the necks of endocytic vesicles. We found that under constant GTP turnover two-rung dynamin scaffold is sufficient to produce fission of lipid nanotubes. Analyzing membrane fission by short dynamin scaffolds, we reveal a catalytic cycle which translates constriction stresses into fission. Upon constriction, coordinated membrane wedging by the scaffold facilitates reversible merger of the inner leaflet of the nanotube, the hemifission. Modeling of this reversible step identifies a low-energy path based on geometric coupling of the scaffold and the membrane. The final translation of the metastable hemifission into complete fission is stochastically linked to disassembly of the scaffold. This catalytic conversion of localized stresses into membrane remodeling suggests a novel paradigm for fission and fusion of cellular membranes.
Fusion and fission drive all vesicular transport. Although topologically opposite, these reactions pass through the same hemi-fusion/fission intermediate1,2, characterized by a ‘stalk’ in which only the inner monolayers of the two compartments have merged to form a localized non-bilayer connection1-3. Formation of the hemi-fission intermediate requires energy input from proteins catalyzing membrane remodeling; however the relationship between protein conformational rearrangements and hemi-fusion/fission remains obscure. Here we analyzed how the GTPase cycle of dynamin, the prototypical membrane fission catalyst4-6, is directly coupled to membrane remodeling. We used intra-molecular chemical cross-linking to stabilize dynamin in its GDP•AlF4--bound transition-state. In the absence of GTP this conformer produced stable hemi-fission, but failed to progress to complete fission, even in the presence of GTP. Further analysis revealed that the pleckstrin homology domain (PHD) locked in its membrane-inserted state facilitated hemi-fission. A second mode of dynamin activity, fueled by GTP hydrolysis, couples dynamin disassembly with cooperative diminishing of the PHD wedging, thus destabilizing the hemi-fission intermediate to complete fission. Molecular simulations corroborate the bimodal character of dynamin action and indicate radial and axial forces as dominant, although not independent drivers of hemi-fission and fission transformations, respectively. Mirrored in the fusion reaction7-8, the force bimodality might constitute a general paradigm for leakage-free membrane remodeling.
Morphological plasticity of biological membrane is critical for cellular life, as cells need to quickly rearrange their membranes. Yet, these rearrangements are constrained in two ways. First, membrane transformations may not lead to undesirable mixing of, or leakage from, the participating cellular compartments. Second, membrane systems should be metastable at large length scales, ensuring the correct function of the particular organelle and its turnover during cellular division. Lipids, through their ability to exist with many shapes ( polymorphism), provide an adequate construction material for cellular membranes. They can selfassemble into shells that are very flexible, albeit hardly stretchable, which allows for their far-reaching morphological and topological behaviors. In this article, we will discuss the importance of lipid polymorphisms in the shaping of membranes and its role in controlling cellular membrane morphology.
Detailed differential scanning calorimetry (DSC), steady-state tryptophan fluorescence and far-UV and visible CD studies, together with enzymatic assays, were carried out to monitor the thermal denaturation of horseradish peroxidase isoenzyme c (HRPc) at pH 3.0. The spectral parameters were complementary to the highly sensitive but integral method of DSC. Thus, changes in far-UV CD corresponded to changes in the overall secondary structure of the enzyme, while that in the Soret region, as well as changes in intrinsic tryptophan fluorescence emission, corresponded to changes in the tertiary structure of the enzyme. The results, supported by data about changes in enzymatic activity with temperature, show that thermally induced transitions for peroxidase are irreversible and strongly dependent upon the scan rate, suggesting that denaturation is under kinetic control. It is shown that the process of HRPc denaturation can be interpreted with sufficient accuracy in terms of the simple kinetic schemewhere k is a first-order kinetic constant that changes with temperature, as given by the Arrhenius equation; N is the native state, and D is the denatured state. On the basis of this model, the parameters of the Arrhenius equation were calculated.Keywords: horeseradish peroxidase; differential scanning calorimetry; intrinsic fluorescence; circular dichroism; irreversible denaturation.Horseradish peroxidase (HRP) belongs to the superfamily of the heme-containing plant peroxidases (EC 1.11.1.7), which has been divided into three classes [1], supported in the first instance by comparison of amino-acid sequence data and confirmed by more recent data on crystal structures [2]. Plant peroxidases, including HRP, comprise class III of the superfamily. Although the function of peroxidases is often seen primarily in terms of the conversion of H 2 O 2 to H 2 O, this should not be allowed to mask their wider participation in other reactions, many of which are biologically significant. Despite the enormous interest in peroxidases owing to their broad practical applications in biotechnology, the data concerning their structural stability are sparse. Although several publications have addressed the thermal stability of peroxidases [3±8], to date the mechanism of the process of thermal denaturation remains unclear. It is known that the biological functions of proteins depend on the correct folding of their native structure and that loss of this folded structure leads to an unfolded, inactive state. Consequently, the study of protein stability is important both from the academic and applied points of view.Factors affecting conformational stability have been studied most intensively in proteins under reversible conditions [9±15]. Nevertheless, it is well known that for different reasons many proteins cannot refold in vitro after denaturation such as proteolytic digestion [16], aggregation, loss of prosthetic group, the cis/trans izomerization of certain proline residues [17,18] or chemical modifications [19]. Generally, the thermal denaturat...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.