OCT4, a POU-domain transcription factor is considered to be a key factor in maintaining the pluripotency of stem cells. Several OCT4 isoforms are differentially expressed in human pluripotent and non-pluripotent cells. Reactivation of OCT4 expression is postulated to occur in differentiated cells that have undergone tumorigenesis. To examine OCT4 expression in colorectal cancer (CRC) tissues, and to assess the efficacy of OCT4 as a potential biomarker for CRC, in this study, we investigated its expression in CRC tissues, evaluated its relationship to various clinicopathological parameters and defined the isoform of OCT4 that was found to be expressed in CRC cases. Primary tumor tissues and matching adjacent non-cancerous tissues were obtained from 84 CRC patients. OCT4 expression and isoform determination were documented by reverse transcription-PCR and real-time PCR. OCT4, Sox-2, and NANOG localization were performed using immunohistochemistry. The isoforms expressed in the studied cases were confirmed by sequencing. Twenty biopsy specimens representing healthy tissues, retrieved from colonoscopy were studied in parallel as controls. OCT4 expression levels were higher in CRC tissues compared to matching, adjacent non-cancerous tissues, and healthy controls. Additionally, the levels of OCT4 expression in CRC tissues correlated with tumor stage. OCT4 and Sox-2 were localized in the nuclei and the cytoplasm of CRC cells. In all CRC cases, we found that the OCT4B1 isoform is expressed. Over-expression of OCT4B1 was found in poorly and moderately differentiated CRC tissues. In conclusion, the data imply that OCT4B1 isoform may represent a potential biomarker for the initiation, progression, and differentiation of CRC.
The CASP9 -1263 A>G polymorphism was observed to play a protective role in CRC predisposition, while the CASP9 -1263 GG genotype may confer a better prognosis at CRC patients.
Recent studies have demonstrated the influence of clock genes in cell cycle regulation, cell proliferation, apoptosis and DNA damage recognition and repair. There is evidence suggesting the implication of clock genes in colorectal cancer (CRC) development and progression. The aim of this study is to evaluate the expression levels of clock genes in CRC and correlate them with patients' prognosis. Forty-two CRC samples (from 24 males and 18 females), their paired noncancerous tissues and 8 biopsies from healthy individuals were included. Quantitative real-time PCR was used to examine the expression levels of CLOCK1, BMAL1, PER1, PER2 and PER3 genes in all the samples. In the cancerous tissues CLOCK1 (p<0.0001) and BMAL1 (p<0.0001) expression levels were higher, while PER1 (p<0.0024) and PER3 (p<0.0001) expression levels were lower compared to matched healthy tissues. No difference was observed in the expression levels of PER2 (p=0.99). No correlation was found between clock gene expression and patients' clinicopathological characteristics or prognosis. The results suggest abnormal expression of CLOCK1, BMAL1, PER1 and PER3 genes in CRC but no correlation with patients' prognosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.