Sum-based global tests are highly popular in multiple hypothesis testing. In this paper, we propose a general closed testing procedure for sum tests, which provides lower confidence bounds for the proportion of true discoveries (TDPs), simultaneously over all subsets of hypotheses. These simultaneous inferences come for free, i.e., without any adjustment of the α-level, whenever a global test is used. Our method allows for an exploratory approach, as simultaneity ensures control of the TDP even when the subset of interest is selected post hoc. It adapts to the unknown joint distribution of the data through permutation testing. Any sum test may be employed, depending on the desired power properties. We present an iterative shortcut for the closed testing procedure, based on the branch and bound algorithm, which converges to the full closed testing results, often after few iterations; even if it is stopped early, it controls the TDP. We compare the properties of different choices for the sum test through simulations, then we illustrate the feasibility of the method for high-dimensional data on brain imaging and genomics data.
Existing methods for differential network analysis could only infer whether two networks of interest have differences between two groups of samples, but could not quantify and localize network differences. In this work, a novel method, permutation-based Network True Discovery Proportions (NetTDP), is proposed to quantify the number of edges (correlations) or nodes (genes) for which the co-expression networks are different. In the NetTDP method, we propose an edge-level statistic and a node-level statistic, and detect true discoveries of edges and nodes in the sense of differential co-expression network, respectively, by the permutation-based sumSome method. Furthermore, the NetTDP method could further localize the differences by inferring the TDPs for edge or gene subsets of interest, which can be selected post hoc. Our NetTDP method allows inference on data-driven modules or biology-driven gene sets, and remains valid even when these sub-networks are optimized using the same data. Experimental results on both simulation data sets and five real data sets show the effectiveness of the proposed method in inferring the quantification and localization of differential co-expression networks. The R code is available at https://github.com/LiminLi-xjtu/NetTDP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.