Ti15Mo metastable beta Ti alloy was solution treated and subsequently deformed by high-pressure torsion (HPT). HPT-deformed and benchmark non-deformed solution-treated materials were annealed at 400 °C and 500 °C in order to investigate the effect of UFG microstructure on the α-phase precipitation. Phase evolution was examined using laboratory X-ray diffraction (XRD) and by high-energy synchrotron X-ray diffraction (HEXRD), which provided more accurate measurements. Microstructure was observed by scanning electron microscopy (SEM) and microhardness was measured for all conditions. HPT deformation was found to significantly enhance the α phase precipitation due the introduction of lattice defects such as dislocations or grain boundaries, which act as preferential nucleation sites. Moreover, in HPT-deformed material, α precipitates are small and equiaxed, contrary to the α lamellae in the non-deformed material. ω phase formation is suppressed due to massive α precipitation and consequent element partitioning. Despite that, HPT-deformed material after ageing exhibits the high microhardness exceeding 450 HV.
Metastable β-Ti alloy Ti-15Mo was prepared by cryogenic ball milling in a slurry of liquid argon. Material remained ductile even at low temperatures, which suppressed particle refinement, but promoted intensive plastic deformation of individual powder particles. Repetitive deformation of powder particles is similar to the multidirectional rolling and resembles bulk severe plastic deformation (SPD) methods. Initial and milled powders were compacted by spark plasma sintering. Sintered milled powder exhibited a refined microstructure with small β-grains and submicrometer sized α-phase precipitates. The microhardness and the yield tensile strength of the milled powder after sintering at 850 °C attained 350 HV and 1200 MPa, respectively. Low ductility of the material can be attributed to high oxygen content originating from the cryogenic milling. This pioneering work shows that cryogenic milling followed by spark plasma sintering is able to produce two-phase β-Ti alloys with refined microstructure and very high strength levels.
Ti15Mo alloy was subjected to two techniques of intensive plastic deformation, namely high pressure torsion and rotary swaging at room temperature. The imposed strain resulted in the formation of an ultrafine-grained structure in both deformed conditions. Detailed inspection of the microstructure revealed the presence of grains with a size of around 100 nm in both conditions. The microstructure after rotary swaging also contained elongated grains with a length up to 1 µm. Isothermal ageing at 400 °C and 500 °C up to 16 h was applied to both conditions to investigate the kinetics of precipitation of the α phase and the recovery of lattice defects. Positron annihilation spectroscopy indicated that the recovery of lattice defects in the β matrix had already occurred at 400 °C and, in terms of positron trapping, was partly compensated by the precipitation of incoherent α particles. At 500 °C the recovery was fully offset by the formation of incoherent α/β interfaces. Contrary to common coarse-grained material, in which the α phase precipitates in the form of lamellae, precipitation of small and equiaxed α particles occurred in the deformed condition. A refined two-phase equiaxed microstructure with α particles and β grain sizes below 1 μm is achievable by simple rotary swaging followed by ageing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.