Much of the Baltic Sea is currently classified as 'affected by eutrophication'. The causes for this are twofold. First, current levels of nutrient inputs (nitrogen and phosphorus) from human activities exceed the natural processing capacity with an accumulation of nutrients in the Baltic Sea over the last 50-100 years. Secondly, the Baltic Sea is naturally susceptible to nutrient enrichment due to a combination of long retention times and stratification restricting ventilation of deep waters. Here, based on a unique data set collated from research activities and long-term monitoring programs, we report on the temporal and spatial trends of eutrophication status for the open Baltic Sea over a 112-year period using the HELCOM Eutrophication Assessment Tool (HEAT 3.0). Further, we analyse variation in the confidence of the eutrophication status assessment based on a systematic quantitative approach using coefficients of variation in the observations. The classifications in our assessment indicate that the first signs of eutrophication emerged in the mid-1950s and the central parts of the Baltic Sea changed from being unaffected by eutrophication to being affected. We document improvements in eutrophication status that are direct consequences of long-term efforts to reduce the inputs of nutrients. The reductions in both nitrogen and phosphorus loads have led to large-scale alleviation of eutrophication and to a healthier Baltic Sea. Reduced confidence in our assessment is seen more recently due to reductions in the scope of monitoring programs. Our study sets a baseline for implementation of the ecosystem-based management strategies and policies currently in place including the EU Marine Strategy Framework Directives and the HELCOM Baltic Sea Action Plan.
Size is a fundamental organismal trait and an important driver of ecosystem functions. Although large individuals may dominate some functions and provide important habitat structuring effects, intra-specific body size effects are rarely investigated in the context of BEF relationships. We used an in situ density manipulation experiment to explore the contribution of large, deep-burrowing bivalves to oxygen and nutrient fluxes across the sediment-water interface. By manipulating bivalve size structure through the removal of large individuals, we held species identity constant, but altered the trait characteristics of the community. The number of large bivalves was the best predictor of ecosystem functioning. Our results highlight that (a) accounting for body size provides important insights into the mechanisms underpinning biodiversity effects on ecosystem function, and (b) if local disturbances are recurrent, preventing individuals from reaching large sizes, the contribution of large adults may be lost, with largely unknown implications for ecosystem functionality.T here is clear evidence that losses in biodiversity reduce the efficiency of ecosystem functions, including productivity and nutrient cycling 1 , but the actual mechanisms that underpin the positive biodiversityecosystem function (BEF) relationships remain an area of intense research 2,3 . A few species (with unique traits) may in fact dominate certain ecosystem processes [4][5][6] , and recent meta-analyses have indeed shown that species identity effects may be as important as richness effects per se 7 . Improving the mechanistic understanding of BEF relationships and allow prediction of the magnitude of change in ecosystem function following the loss of particular traits 2,8 thus depends on the nature of the ecosystem function(s) of interest and trait composition not only across the resident community but also within species. Trait-based approaches have, however, largely focused on assigning traits to species rather than individuals 9 . Hence, while interspecific differences in trait composition and the subsequent functional contribution to ecosystem processes have been acknowledged, differences in intra-specific trait characteristics are rarely addressed 10 (but see e.g. [11][12][13] ).Body mass is a fundamental organism trait that affects metabolic rate, energy demand and uptake rate 9,14,15 , and is an important characteristic of overall population and community structure through density-mass allometric relationships 14 . Even though high numbers of small individuals may dominate specific ecosystem functions through rapid turnover rates, the fewer large individuals may dominate other functions and provide important habitat structuring effects 16 . Particularly where ecosystem functions relate to the generation of biogenic habitat or organisms mediation of the nature and flux of energy and matter, size matters. This is potentially very important in marine sediments where large organisms can be expected to displace more sediment, pump more water an...
Disturbance-mediated species loss has prompted research considering how ecosystem functions are changed when biota is impaired. However, there is still limited empirical evidence from natural environments evaluating the direct and indirect (i.e. via biota) effects of disturbance on ecosystem functioning. Oxygen deficiency is a widespread threat to coastal and estuarine communities. While the negative impacts of hypoxia on benthic communities are well known, few studies have assessed in situ how benthic communities subjected to different degrees of hypoxic stress alter their contribution to ecosystem functioning. We studied changes in sediment ecosystem function (i.e. oxygen and nutrient fluxes across the sediment water-interface) by artificially inducing hypoxia of different durations (0, 3, 7 and 48 days) in a subtidal sandy habitat. Benthic chamber incubations were used for measuring responses in sediment oxygen and nutrient fluxes. Changes in benthic species richness, structure and traits were quantified, while stress-induced behavioral changes were documented by observing bivalve reburial rates. The initial change in faunal behavior was followed by non-linear degradation in benthic parameters (abundance, biomass, bioturbation potential), gradually impairing the structural and functional composition of the benthic community. In terms of ecosystem function, the increasing duration of hypoxia altered sediment oxygen consumption and enhanced sediment effluxes of NH4 + and dissolved Si. Although effluxes of PO4 3− were not altered significantly, changes were observed in sediment PO4 3− sorption capability. The duration of hypoxia (i.e. number of days of stress) explained a minor part of the changes in ecosystem function. Instead, the benthic community and disturbance-driven changes within the benthos explained a larger proportion of the variability in sediment oxygen- and nutrient fluxes. Our results emphasize that the level of stress to the benthic habitat matters, and that the link between biodiversity and ecosystem function is likely to be affected by a range of factors in complex, natural environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.