WNT-CTNN1B signaling promotes cancer cell proliferation and stemness. Furthermore, recent evidence indicates that macroautophagy/autophagy regulates WNT signaling. Here we investigated the impact of inhibiting WNT signaling on autophagy in glioblastoma (GBM), a devastating brain tumor. Inhibiting TCF, or silencing TCF4 or CTNNB1/β-catenin upregulated SQSTM1/p62 in GBM at transcriptional and protein levels and, in turn, autophagy. DKK1/Dickkopf1, a canonical WNT receptor antagonist, also induced autophagic flux. Importantly, TCF inhibition regulated autophagy through MTOR inhibition and dephosphorylation, and nuclear translocation of TFEB, a master regulator of lysosomal biogenesis and autophagy. TCF inhibition or silencing additionally affected GBM cell proliferation and migration. Autophagy induction followed by its blockade can promote cancer cell death. In agreement with this notion, halting both TCF-CTNNB1 and autophagy pathways decreased cell viability and induced apoptosis of GBM cells through a SQSTM1-dependent mechanism involving CASP8 (caspase 8). In vivo experiments further underline the therapeutic potential of such dual targeting in GBM.
In the past decade, T-type Ca channels (TTCC) have been unveiled as key regulators of cancer cell biology and thus have been proposed as chemotherapeutic targets. Indeed, and studies indicate that TTCC pharmacologic blockers have a negative impact on the viability of cancer cells and reduce tumor size, respectively. Consequently mibefradil, a TTCC blocker approved in 1997 as an antihypertensive agent but withdrawn in 1998 because of drug-drug interactions, was granted 10 years later the orphan drug status by the FDA to investigate its efficacy against brain, ovary, and pancreatic cancer. However, the existence of different channel isoforms with distinct physiologic roles, together with the lack of selective pharmacologic agents, has hindered a conclusive chemotherapeutic evaluation. Here, we review the available evidence on TTCC expression, value as prognostic markers, and effectiveness of their pharmacologic blockade on cancer cells and in preclinical models. We additionally summarize the status of clinical trials using mibefradil against glioblastoma multiforme. Finally, we discuss the future perspectives and the importance of further development of multidisciplinary research efforts on the consideration of TTCCs as biomarkers or targetable molecules in cancer..
Focal adhesion kinase (FAK) is a central component of focal adhesions that regulate cancer cell proliferation and migration. Here, we studied the effects of FAK inhibition in glioblastoma (GBM), a fast growing brain tumor that has a poor prognosis. Treating GBM cells with the FAK inhibitor PF-573228 induced a proliferative arrest and increased cell size. PF-573228 also reduced the growth of GBM neurospheres. These effects were associated with increased p27/CDKN1B levels and β-galactosidase activity, compatible with acquisition of senescence. Interestingly, FAK inhibition repressed the expression of the autophagy cargo receptor p62/SQSTM-1. Moreover, depleting p62 in GBM cells also induced a senescent-like phenotype through transcriptional upregulation of p27. Our results indicate that FAK inhibition arrests GBM cell proliferation, resulting in cell senescence, and pinpoint p62 as being key to this process. These findings highlight the possible therapeutic value of targeting FAK in GBM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.